Silja Röttgers
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silja Röttgers.
Cancer Cell | 2008
Christoph le Viseur; Marc Hotfilder; Simon Bomken; Kerrie Wilson; Silja Röttgers; André Schrauder; Annegret Rosemann; Julie Irving; Ronald W. Stam; Leonard D. Shultz; Jochen Harbott; Heribert Jürgens; Martin Schrappe; Rob Pieters; Josef Vormoor
We examined the leukemic stem cell potential of blasts at different stages of maturation in childhood acute lymphoblastic leukemia (ALL). Human leukemic bone marrow was transplanted intrafemorally into NOD/scid mice. Cells sorted using the B precursor differentiation markers CD19, CD20, and CD34 were isolated from patient samples and engrafted mice before serial transplantation into primary or subsequent (up to quaternary) recipients. Surprisingly, blasts representative of all of the different maturational stages were able to reconstitute and reestablish the complete leukemic phenotype in vivo. Sorted blast populations mirrored normal B precursor cells with transcription of a number of stage-appropriate genes. These observations inform a model for leukemia-propagating stem cells in childhood ALL.
Lancet Oncology | 2012
Andrea Biondi; Martin Schrappe; Paola De Lorenzo; Anders Castor; Giovanna Lucchini; Virginie Gandemer; Rob Pieters; Jan Stary; Gabriele Escherich; Myriam Campbell; Chi Kong Li; Ajay Vora; Maurizio Aricò; Silja Röttgers; Vaskar Saha; Maria Grazia Valsecchi
Summary Background Trials of imatinib have provided evidence of activity in adults with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (ALL), but the drugs role when given with multidrug chemotherapy to children is unknown. This study assesses the safety and efficacy of oral imatinib in association with a Berlin–Frankfurt–Munster intensive chemotherapy regimen and allogeneic stem-cell transplantation for paediatric patients with Philadelphia-chromosome-positive ALL. Methods Patients aged 1–18 years recruited to national trials of front-line treatment for ALL were eligible if they had t(9;22)(q34;q11). Patients with abnormal renal or hepatic function, or an active systemic infection, were ineligible. Patients were enrolled by ten study groups between 2004 and 2009, and were classified as good risk or poor risk according to early response to induction treatment. Good-risk patients were randomly assigned by a web-based system with permuted blocks (size four) to receive post-induction imatinib with chemotherapy or chemotherapy only in a 1:1 ratio, while all poor-risk patients received post-induction imatinib with chemotherapy. Patients were stratified by study group. The chemotherapy regimen was modelled on a Berlin–Frankfurt–Munster high-risk backbone; all received four post-induction blocks of chemotherapy after which they became eligible for stem-cell transplantation. The primary endpoints were disease-free survival at 4 years in the good-risk group and event-free survival at 4 years in the poor-risk group, analysed by intention to treat and a secondary analysis of patients as treated. The trial is registered with EudraCT (2004-001647-30) and ClinicalTrials.gov, number NCT00287105. Findings Between Jan 1, 2004, and Dec 31, 2009, we screened 229 patients and enrolled 178: 108 were good risk and 70 poor risk. 46 good-risk patients were assigned to receive imatinib and 44 to receive no imatinib. Median follow-up was 3·1 years (IQR 2·0–4·6). 4-year disease-free survival was 72·9% (95% CI 56·1–84·1) in the good-risk, imatinib group versus 61·7% (45·0–74·7) in the good-risk, no imatinib group (p=0·24). The hazard ratio (HR) for failure, adjusted for minimal residual disease, was 0·63 (0·28–1·41; p=0·26). The as-treated analysis showed 4-year disease-free survival was 75·2% (61·0–84·9) for good-risk patients receiving imatinib and 55·9% (36·1–71·7) for those who did not receive imatinib (p=0·06). 4-year event-free survival for poor-risk patients was 53·5% (40·4–65·0). Serious adverse events were much the same in the good-risk groups, with infections caused by myelosuppression the most common. 16 patients in the good-risk imatinib group versus ten in the good-risk, no imatinib group (p=0·64), and 24 in the poor-risk group, had a serious adverse event. Interpretation Our results suggests that imatinib in conjunction with intensive chemotherapy is well tolerated and might be beneficial for treatment of children with Philadelphia-chromosome-positive ALL. Funding Projet Hospitalier de Recherche Clinique-Cancer (France), Fondazione Tettamanti-De Marchi and Associazione Italiana per la Ricerca sul Cancro (Italy), Novartis Germany, Cancer Research UK, Leukaemia Lymphoma Research, and Central Manchester University Hospitals Foundation Trust.
Journal of Clinical Oncology | 2008
Andishe Attarbaschi; Georg Mann; Renate Panzer-Grümayer; Silja Röttgers; Manuel Steiner; Margit König; Eva Csinady; Michael Dworzak; Markus G. Seidel; Dasa Janousek; Anja Möricke; Carsten Reichelt; Jochen Harbott; Martin Schrappe; Helmut Gadner; Oskar A. Haas
PURPOSE We aimed to identify relapse predictors in children with a B-cell precursor acute lymphoblastic leukemia (ALL) and an intrachromosomal amplification of chromosome 21 (iAMP21), a novel genetic entity associated with poor outcome. PATIENTS AND METHODS We screened 1,625 patients who were enrolled onto the Austrian and German ALL-Berlin-Frankfurt-Münster (ALL-BFM) trials 86, 90, 95, and 2000 with ETV6/RUNX1-specific fluorescent in situ hybridization probes, and we identified 29 patient cases (2%) who had an iAMP21. Minimal residual disease (MRD) was quantified with clone-specific immunoglobulin and T-cell receptor gene rearrangements. RESULTS Twenty-five patients were good responders to prednisone, and all achieved remission after induction therapy. Eleven patients experienced relapse, which included eight who experienced relapse after cessation of front-line therapy. Six-year event-free and overall survival rates were 37% +/- 14% and 66% +/- 11%, respectively. Results of MRD analysis were available in 24 (83%) of 29 patients: nine (37.5%) belonged to the low-risk, 14 (58.5%) to the intermediate-risk, and one (4%) to the high-risk group. MRD results were available in 8 of 11 patients who experienced a relapse. Seven occurred among the 14 intermediate-risk patients, and one occurred in the high-risk patient. CONCLUSION The overall and early relapse rates in the BFM study were lower than that in a previous United Kingdom Medical Research Council/Childhood Leukemia Working Party study (38% v 61% and 27% v 47%, respectively), which might result from more intensive induction and early reintensification therapy in the ALL-BFM protocols. MRD values were the only reliable parameter to discriminate between a low and high risk of relapse (P = .02).
British Journal of Haematology | 2009
Christine Damm-Welk; Wolfram Klapper; Ilske Oschlies; Stefan Gesk; Silja Röttgers; Jutta Bradtke; Reiner Siebert; Alfred Reiter; Willi Woessmann
Anaplastic large cell lymphomas (ALCL) in children express anaplastic lymphoma kinase (ALK) fusion genes, most commonly NPM1‐ALK. The distribution of X‐ALK among 66 childhood ALCLs was analysed. One ALCL was ALK‐negative. Reverse transcription polymerase chain reaction detected NPM1‐ALK in 58 tumours, all showing nuclear and cytoplasmic ALK staining. The remaining seven ALCL stained for ALK in the cytoplasm only: two expressed TPM3‐ALK, one ATIC‐ALK, one MYH9‐ALK; three no TPM3‐, TFG‐, ATIC‐, CLTC‐ or MYH9‐ALK. Almost 90% of paediatric ALK‐positive ALCLs express NPM1‐ALK. There was complete concordance between ALK staining pattern and the presence of a typical/variant ALK fusion partner.
International Journal of Cancer | 2013
Jeanette Woiterski; Martin Ebinger; Kai Witte; Barbara Goecke; Vanessa Heininger; Martin Philippek; Michael Bonin; André Schrauder; Silja Röttgers; Wolfgang Herr; Peter Lang; Rupert Handgretinger; Udo F. Hartwig; Maya C. André
Although immortalized cell lines have been extensively used to optimize treatment strategies in cancer, the usefulness of such in vitro systems to recapitulate primary disease is limited. Therefore, the design of in vivo models ideally utilizing patient‐derived material is of critical importance. In this regard, NOD.Cg‐PrkdcscidIL2rgtmWjl/Sz (NSG) mice have been reported to provide superior engraftment rates. However, limited data exist on the validity of such a model to constitute a surrogate marker for clinical parameters. We studied primary and serial engraftment on more than 200 NSG mice with 54 primary pediatric B cell precursor acute lymphatic leukemia (B‐ALL), myeloid leukemia (AML) and T cell leukemia (T‐ALL) samples, characterized the leukemogenic profile and correlated engraftment kinetics with clinical outcome. Median time to engraftment was 7–10 weeks and 90% of the mice engrafted. Male recipients conferred significantly higher engraftment levels than female recipients (p ≤ 0.004). PCR‐based minimal residual disease marker expression and fluorescence in situ hybridization confirmed the presence of patient‐specific genetic aberrations in mice. Transcriptome cluster analysis of genes known to be important in the leukemogenesis of all three diseases revealed that well‐known tumor‐regulating genes were expressed to a comparable extent in mice and men. The extent of engraftment and overall survival of NSG mice highly correlated with the individual prognosis of B‐ALL, AML and T‐ALL patients. Thus, we propose an in vivo model that provides a valuable preclinical tool to explore the heterogeneity of leukemic disease and exploit patient‐tailored leukemia‐targeting strategies within multivariate analyses.
PLOS ONE | 2013
Svenja Daschkey; Silja Röttgers; Anamika Giri; Jutta Bradtke; Andrea Teigler-Schlegel; Gunter Meister; Arndt Borkhardt; Pablo Landgraf
Background The role of microRNAs (miRNAs), important post-transcriptional regulators, in the pathogenesis of acute myeloid leukemia (AML) is just emerging and has been mainly studied in adults. First studies in children investigate single selected miRNAs, however, a comprehensive overview of miRNA expression and function in children and young adults is missing so far. Methodology/Principal Findings We here globally identified differentially expressed miRNAs between AML subtypes in a survey of 102 children and adolescent. Pediatric samples with core-binding factor AML and promyelocytic leukemia could be distinguished from each other and from MLL-rearranged AML subtypes by differentially expressed miRNAs including miR-126, -146a, -181a/b, -100, and miR-125b. Subsequently, we established a newly devised immunoprecipitation assay followed by rapid microarray detection for the isolation of Argonaute proteins, the hallmark of miRNA targeting complexes, from cell line models resembling core-binding factor and promyelocytic leukemia. Applying this method, we were able to identify Ago-associated miRNAs and their targeted mRNAs. Conclusions/Significance miRNAs as well as their mRNA-targets showed binding preferences for the different Argonaute proteins in a cell context-dependent manner. Bioinformatically-derived pathway analysis suggested a concerted action of all four Argonaute complexes in the regulation of AML-relevant pathways. For the first time, to our knowledge, a complete AML data set resulting from carefully devised biochemical isolation experiments and analysis of Ago-associated miRNAs and their target-mRNAs is now available.
Genes, Chromosomes and Cancer | 2013
Cai Chen; Christoph Bartenhagen; Michael Gombert; Vera Okpanyi; Vera Binder; Silja Röttgers; Jutta Bradtke; Andrea Teigler-Schlegel; Jochen Harbott; Sebastian Ginzel; Ralf Thiele; Ute Fischer; Martin Dugas; Jianda Hu; Arndt Borkhardt
Near haploidy (23–29 chromosomes) is a numerical cytogenetic aberration in childhood acute lymphoblastic leukemia (ALL) associated with particularly poor outcome. In contrast, high hyperdiploidy (51–67 chromosomes) has a favorable prognosis. Correct classification and appropriate risk stratification of near haploidy is frequently hampered by the presence of apparently high hyperdiploid clones that arise by endoreduplication of the original near haploid clone. We evaluated next‐generation‐sequencing (NGS) to distinguish between “high hyperdiploid” leukemic clones of near haploid and true high hyperdiploid origin. Five high hyperdiploid ALL cases and the “high hyperdiploid” cell line MHH‐CALL‐2, derived from a near haploid clone, were tested for uniparental isodisomy. NGS showed that all disomic chromosomes of MHH‐CALL‐2, but none of the patients, were of uniparental origin, thus reliably discriminating these subtypes. Whole‐exome‐ and whole‐genome‐sequencing of MHH‐CALL‐2 revealed homozygous non‐synonymous coding mutations predicted to be deleterious for the protein function of 63 genes, among them known cancer‐associated genes, such as FANCA, NF1, TCF7L2, CARD11, EP400, histone demethylases, and transferases (KDM6B, KDM1A, PRDM11). Only eight of these were also, but heterozygously, mutated in the high hyperdiploid patients. Structural variations in MHH‐CALL‐2 include a homozygous deletion (MTAP/CDKN2A/CDKN2B/ANRIL), a homozygous inversion (NCKAP5), and an unbalanced translocation (FAM189A1). Together, the sequence variations provide MHH‐CALL‐2 with capabilities typically acquired during cancer development, e.g., loss of cell cycle control, enhanced proliferation, lack of DNA repair, cell death evasion, and disturbance of epigenetic gene regulation. Poorer prognosis of near haploid ALL most likely results from full penetrance of a large array of detrimental homozygous mutations.
European Journal of Haematology | 2009
Ronald Adler; Susanne Viehmann; Eberhard Kuhlisch; Yvonne Martiniak; Silja Röttgers; Jochen Harbott; Meinolf Suttorp
Background and objective: The characteristic chromosomal translocation t(9;22)(q34;q11) in chronic myeloid leukaemia (CML) mainly results in the two different BCR/ABL fusion transcripts b2a2 or b3a2. Both transcript variants can occur simultaneously due to alternative splicing of the b3a2 transcript. Conflicting results have been reported on the influence of the transcripts on haematological findings at diagnosis and the course of the disease in adults while data concerning these topics on childhood CML are still missing. This paper reports on a correlation of BCR/ABL transcript variants with patients’ characteristics in childhood CML.
British Journal of Haematology | 2006
J. Neudenberger; Marc Hotfilder; Annegret Rosemann; C. Langebrake; Dirk Reinhardt; Rob Pieters; André Schrauder; Martin Schrappe; Silja Röttgers; Jochen Harbott; Josef Vormoor
It has increasingly been acknowledged that only a few leukaemic cells possess the capability to renew themselves and that only these self‐renewing leukaemic stem cells are able to initiate relapses. Therefore, these leukaemic stem cells should be the target cells for therapy and for minimal residual disease (MRD) detection. Because of its presence on blasts of 11q23‐rearranged high‐risk leukaemic patients, neuron‐glial antigen 2 (NG2) is thought to be a valuable marker for detecting leukaemic stem cells. Six acute myeloid leukaemia (AML)/abn(11q23) and three acute lymphoblastic leukaemia (ALL)/t(4;11) samples were analysed by four‐colour flow cytometry for NG2 expression on primitive cell populations. Candidate leukaemic cell populations were defined by the antigen profiles CD34+CD38− in AML and CD34+CD19−CD117+ in ALL. Surprisingly, in all patients these candidate stem cell populations were shown to lack expression of NG2. Instead, a correlation between the expression of the myeloid differentiation marker CD33 and increasing levels of NG2 on maturing cells could be demonstrated. Similarly, in ALL patients CD34+CD19+ cells showed a higher expression of NG2 mRNA compared with CD34+CD19−. Thus, NG2 appears to be upregulated with differentiation and not to be expressed on primitive disease‐maintaining cells. This hampers the clinical use of NG2 as a therapeutic target and as a sensitive marker for MRD detection.
Leukemia Research | 2015
Cai Chen; Christoph Bartenhagen; Michael Gombert; Vera Okpanyi; Vera Binder; Silja Röttgers; Jutta Bradtke; Andrea Teigler-Schlegel; Jochen Harbott; Sebastian Ginzel; Ralf Thiele; Peter Husemann; Pina Fanny Ida Krell; Arndt Borkhardt; Martin Dugas; Jianda Hu; Ute Fischer
20% of children suffering from high hyperdiploid acute lymphoblastic leukemia develop recurrent disease. The molecular mechanisms are largely unknown. Here, we analyzed the genetic landscape of five patients at relapse, who developed recurrent disease without prior high-risk indication using whole-exome- and whole-genome-sequencing. Oncogenic mutations of RAS pathway genes (NRAS, KRAS, FLT3, n=4) and deactivating mutations of major epigenetic regulators (CREBBP, EP300, each n=2 and ARID4B, EZH2, MACROD2, MLL2, each n=1) were prominent in these cases and virtually absent in non-recurrent cases (n=6) or other pediatric acute lymphoblastic leukemia cases (n=18). In relapse nucleotide variations were detected in cell fate determining transcription factors (GLIS1, AKNA). Structural genomic alterations affected genes regulating B-cell development (IKZF1, PBX1, RUNX1). Eleven novel translocations involved the genes ART4, C12orf60, MACROD2, TBL1XR1, LRRN4, KIAA1467, and ELMO1/MIR1200. Typically, patients harbored only single structural variations, except for one patient who displayed massive rearrangements in the context of a germline tumor suppressor TP53 mutation and a Li-Fraumeni syndrome-like family history. Another patient harbored a germline mutation in the DNA repair factor ATM. In summary, the relapse patients of our cohort were characterized by somatic mutations affecting the RAS pathway, epigenetic and developmental programs and germline mutations in DNA repair pathways.