Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silje H. Nordgard is active.

Publication


Featured researches published by Silje H. Nordgard.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Allele-specific copy number analysis of tumors

Peter Van Loo; Silje H. Nordgard; Ole Christian Lingjærde; Hege G. Russnes; Inga H. Rye; Wei Sun; Victor J. Weigman; Peter Marynen; Anders Zetterberg; Bjørn Naume; Charles M. Perou; Anne Lise Børresen-Dale; Vessela N. Kristensen

We present an allele-specific copy number analysis of the in vivo breast cancer genome. We describe a unique bioinformatics approach, ASCAT (allele-specific copy number analysis of tumors), to accurately dissect the allele-specific copy number of solid tumors, simultaneously estimating and adjusting for both tumor ploidy and nonaberrant cell admixture. This allows calculation of “ASCAT profiles” (genome-wide allele-specific copy-number profiles) from which gains, losses, copy number-neutral events, and loss of heterozygosity (LOH) can accurately be determined. In an early-stage breast carcinoma series, we observe aneuploidy (>2.7n) in 45% of the cases and an average nonaberrant cell admixture of 49%. By aggregation of ASCAT profiles across our series, we obtain genomic frequency distributions of gains and losses, as well as genome-wide views of LOH and copy number-neutral events in breast cancer. In addition, the ASCAT profiles reveal differences in aberrant tumor cell fraction, ploidy, gains, losses, LOH, and copy number-neutral events between the five previously identified molecular breast cancer subtypes. Basal-like breast carcinomas have a significantly higher frequency of LOH compared with other subtypes, and their ASCAT profiles show large-scale loss of genomic material during tumor development, followed by a whole-genome duplication, resulting in near-triploid genomes. Finally, from the ASCAT profiles, we construct a genome-wide map of allelic skewness in breast cancer, indicating loci where one allele is preferentially lost, whereas the other allele is preferentially gained. We hypothesize that these alternative alleles have a different influence on breast carcinoma development.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling

Vessela N. Kristensen; Charles J. Vaske; Josie Ursini-Siegel; Peter Van Loo; Silje H. Nordgard; Ravi Sachidanandam; Therese Sørlie; Fredrik Wärnberg; Vilde D. Haakensen; Åslaug Helland; Bjørn Naume; Charles M. Perou; David Haussler; Olga G. Troyanskaya; Anne Lise Børresen-Dale

We use an integrated approach to understand breast cancer heterogeneity by modeling mRNA, copy number alterations, microRNAs, and methylation in a pathway context utilizing the pathway recognition algorithm using data integration on genomic models (PARADIGM). We demonstrate that combining mRNA expression and DNA copy number classified the patients in groups that provide the best predictive value with respect to prognosis and identified key molecular and stromal signatures. A chronic inflammatory signature, which promotes the development and/or progression of various epithelial tumors, is uniformly present in all breast cancers. We further demonstrate that within the adaptive immune lineage, the strongest predictor of good outcome is the acquisition of a gene signature that favors a high T-helper 1 (Th1)/cytotoxic T-lymphocyte response at the expense of Th2-driven humoral immunity. Patients who have breast cancer with a basal HER2-negative molecular profile (PDGM2) are characterized by high expression of protumorigenic Th2/humoral-related genes (24–38%) and a low Th1/Th2 ratio. The luminal molecular subtypes are again differentiated by low or high FOXM1 and ERBB4 signaling. We show that the interleukin signaling profiles observed in invasive cancers are absent or weakly expressed in healthy tissue but already prominent in ductal carcinoma in situ, together with ECM and cell-cell adhesion regulating pathways. The most prominent difference between low and high mammographic density in healthy breast tissue by PARADIGM was that of STAT4 signaling. In conclusion, by means of a pathway-based modeling methodology (PARADIGM) integrating different layers of molecular data from whole-tumor samples, we demonstrate that we can stratify immune signatures that predict patient survival.


Plant Physiology | 2003

Seed 1-Cysteine Peroxiredoxin Antioxidants Are Not Involved in Dormancy, But Contribute to Inhibition of Germination during Stress

Camilla Haslekås; Marte K. Viken; Paul E. Grini; Vigdis Nygaard; Silje H. Nordgard; Trine J. Meza; Reidunn B. Aalen

Peroxiredoxins (Prx) are thiol-dependent antioxidants containing one (1-cysteine [-Cys]) or two (2-Cys) conserved Cys residues that protect lipids, enzymes, and DNA against reactive oxygen species. In plants, the 1-Cys Prxs are highly expressed during late seed development, and the expression pattern is dormancy related in mature seeds. We have expressed the Arabidopsis 1-Cys Prx AtPER1 in Escherichia coli and show that this protein has antioxidant activity in vitro and protects E. coli in vivo against the toxic oxidant cumene hydroperoxide. Although some 1-Cys Prxs are targeted to the nucleus, a green fluorescent protein-AtPER1 fusion protein was also localized to the cytoplasm in an onion epidermis subcellular localization assay. It has been proposed that seed Prxs are involved in maintenance of dormancy and/or protect the embryo and aleurone layer surviving desiccation against damage caused by reactive oxygen species. These hypotheses were tested using transgenic Arabidopsis lines overexpressing the barley (Hordeum vulgare) 1-Cys PER1 protein and lines with reduced levels of AtPER1 due to antisensing or RNA interference. We found no correlation between Prx levels and the duration of the after-ripening period required before germination. Thus, Prxs are unlikely to contribute to maintenance of dormancy. RNA interference lines almost devoid of AtPER1 protein developed and germinated normally under standard growth room conditions. However, seeds from lines overexpressing PER1 were less inclined to germinate than wild-type seeds in the presence of NaCl, mannitol, and methyl viologen, suggesting that Prx can sense harsh environmental surroundings and play a part in the inhibition of germination under unfavorable conditions.


Nucleic Acids Research | 2009

Integrated study of copy number states and genotype calls using high-density SNP arrays

Wei Sun; Fred A. Wright; Zhengzheng Tang; Silje H. Nordgard; Peter Van Loo; Tianwei Yu; Vessela N. Kristensen; Charles M. Perou

We propose a statistical framework, named genoCN, to simultaneously dissect copy number states and genotypes using high-density SNP (single nucleotide polymorphism) arrays. There are at least two types of genomic DNA copy number differences: copy number variations (CNVs) and copy number aberrations (CNAs). While CNVs are naturally occurring and inheritable, CNAs are acquired somatic alterations most often observed in tumor tissues only. CNVs tend to be short and more sparsely located in the genome compared with CNAs. GenoCN consists of two components, genoCNV and genoCNA, designed for CNV and CNA studies, respectively. In contrast to most existing methods, genoCN is more flexible in that the model parameters are estimated from the data instead of being decided a priori. GenoCNA also incorporates two important strategies for CNA studies. First, the effects of tissue contamination are explicitly modeled. Second, if SNP arrays are performed for both tumor and normal tissues of one individual, the genotype calls from normal tissue are used to study CNAs in tumor tissue. We evaluated genoCN by applications to 162 HapMap individuals and a brain tumor (glioblastoma) dataset and showed that our method can successfully identify both types of copy number differences and produce high-quality genotype calls.


Molecular Oncology | 2011

Methylation profiling with a panel of cancer related genes: Association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer

Jo Anders Rønneberg; Thomas Fleischer; Hiroko K. Solvang; Silje H. Nordgard; Hege Edvardsen; Ivan Potapenko; Daniel Nebdal; Christian Daviaud; Ivo Gut; Ida Bukholm; Bjørn Naume; Anne Lise Børresen-Dale; Jörg Tost; Vessela N. Kristensen

Breast cancer is a heterogeneous disease that can be divided in subtypes based on histology, gene expression profiles as well as differences in genomic aberrations. Distinct global DNA methylation profiles have been reported in normal breast epithelial cells as well as in breast tumors. However, the influence of the tumor methylome on the previously described subgroups of breast cancer is not fully understood. Here we report the DNA methylation profiles of 80 breast tumors using a panel of 807 cancer related genes interrogating 1505 CpG sites. We identified three major clusters based on the methylation profiles; one consisting of mainly tumors of myoepithelial origin and two other clusters with tumors of predominantly luminal epithelial origin. The clusters were different with respect to estrogen receptor status, TP53 status, ErbB2 status and grade. The most significantly differentially methylated genes including HDAC1, TFF1, OGG1, BMP3, FZD9 and HOXA11 were confirmed by pyrosequencing. Gene Ontology analysis revealed enrichment for genes involved in developmental processes including homeobox domain genes (HOXA9, HOXA11, PAX6, MYBL2, ISL1 and IPF1) and (ETS1, HDAC1, CREBBP, GAS7, SPI1 and TBX1). Extensive correlation to mRNA expression was observed. Pathway analyses identified a significant association with canonical (curated) pathways such as hepatic fibrosis including genes like EGF, NGFR and TNF, dendritic cell maturation and the NF‐κB signaling pathway. Our results show that breast tumor expression subtypes harbor major epigenetic differences and tumors with similar gene expression profiles might belong to epigenetically different subtypes. Some of the transcription factors identified, with key roles in differentiation and development might play a role in inducing and maintaining the different phenotypes.


Breast Cancer Research and Treatment | 2012

Basal-like Breast cancer DNA copy number losses identify genes involved in genomic instability, response to therapy, and patient survival

Victor J. Weigman; Hann Hsiang Chao; Andrey A. Shabalin; Xiaping He; Joel S. Parker; Silje H. Nordgard; Tatyana A. Grushko; Dezheng Huo; Chika Nwachukwu; Andrew B. Nobel; Vessela N. Kristensen; Anne Lise Børresen-Dale; Olufunmilayo I. Olopade; Charles M. Perou

Breast cancer is a heterogeneous disease with known expression-defined tumor subtypes. DNA copy number studies have suggested that tumors within gene expression subtypes share similar DNA Copy number aberrations (CNA) and that CNA can be used to further sub-divide expression classes. To gain further insights into the etiologies of the intrinsic subtypes, we classified tumors according to gene expression subtype and next identified subtype-associated CNA using a novel method called SWITCHdna, using a training set of 180 tumors and a validation set of 359 tumors. Fisher’s exact tests, Chi-square approximations, and Wilcoxon rank-sum tests were performed to evaluate differences in CNA by subtype. To assess the functional significance of loss of a specific chromosomal region, individual genes were knocked down by shRNA and drug sensitivity, and DNA repair foci assays performed. Most tumor subtypes exhibited specific CNA. The Basal-like subtype was the most distinct with common losses of the regions containing RB1, BRCA1, INPP4B, and the greatest overall genomic instability. One Basal-like subtype-associated CNA was loss of 5q11–35, which contains at least three genes important for BRCA1-dependent DNA repair (RAD17, RAD50, and RAP80); these genes were predominantly lost as a pair, or all three simultaneously. Loss of two or three of these genes was associated with significantly increased genomic instability and poor patient survival. RNAi knockdown of RAD17, or RAD17/RAD50, in immortalized human mammary epithelial cell lines caused increased sensitivity to a PARP inhibitor and carboplatin, and inhibited BRCA1 foci formation in response to DNA damage. These data suggest a possible genetic cause for genomic instability in Basal-like breast cancers and a biological rationale for the use of DNA repair inhibitor related therapeutics in this breast cancer subtype.


Genes, Chromosomes and Cancer | 2008

Genome-wide analysis identifies 16q deletion associated with survival, molecular subtypes, mRNA expression, and germline haplotypes in breast cancer patients

Silje H. Nordgard; Fredrik Ekeberg Johansen; Grethe Grenaker Alnæs; Elmar Bucher; Ann-Christine Syvänen; Bjoørn Naume; Anne Lise Børresen-Dale; Vessela N. Kristensen

Breast carcinomas are characterized by DNA copy number alterations (CNAs) with biological and clinical significance. This explorative study integrated CNA, expression, and germline genotype data of 112 early‐stage breast cancer patients. Recurrent CNAs differed substantially between tumor subtypes classified according to expression pattern. Deletion of 16q was overrepresented in Luminal A, and a predictor of good prognosis, both overall and for the nonluminal A subgroups. The deleted region most significantly associated with survival mapped to 16q22.2, harboring the genes TXNL4B and DXH38, whose expression was strongly correlated with the deletion. The area most frequently deleted resided on 16q23.1, 3.5 MB downstream of the area most significantly associated with survival, and included the tumor suppressor gene ADAMTS18 and the cell recognition gene CNTNAP4. Whole‐genome association analysis identified germline single nucleotide polymorphisms (SNPs) and their corresponding haplotypes, residing on several different chromosomes, to be associated with deletion of 16q. The genes where these SNPs reside encode proteins involved in the extracellular matrix (CHST3 and SPOCK2), in regulation of the cell cycle (JMY, PTPRN2, and Cwf19L2) and chromosome stability (KPNB1).


Plant Molecular Biology | 2003

ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress

Camilla Haslekås; Paul E. Grini; Silje H. Nordgard; Tage Thorstensen; Marte K. Viken; Vigdis Nygaard; Reidunn B. Aalen

The peroxiredoxin antioxidant gene AtPER1 has been considered to be specifically expressed in the embryo and aleurone layer during maturation and desiccation stages of development, and in the mature seed, typically for late embryogenesis-abundant (lea) transcripts. In the abscisic acid-insensitive abi3-1 mutant, the AtPER1 transcript level is strongly reduced, suggesting ABI3 to be a prime regulator of AtPER1. We have studied the expression pattern and regulation of AtPER1 with a series of nine promoter::GUS constructs with deletions and/or mutations in putative regulatory elements. Arabidopsis lines harbouring these constructs revealed AtPER1 promoter activity in the endosperm, especially the chalazal cyst, already when the embryo is in the late globular stage, in the embryo from the late torpedo stage, and in distinct cells of unfertilized and fertilized ovules. Early expression seems to be dependent on a putative antioxidant-responsive promoter element (ARE), while from the bent cotyledon stage endosperm and embryo expression is dependent on an ABA-responsive element (ABRE) likely to bind ABI5. The shortest promoter fragment (113 bp), devoid of ARE, ABRE and without an intact RY/Sph element thought to bind ABI3 did not drive GUS expression. The AtPER1::GUSconstruct also revealed expression in cotyledons, meristems and stem branching points. In general, seed and vegetative expression coincided with the expression pattern of ABI3. In plants ectopically expressing ABI3, AtPER1::GUS expression was found in true leaves, and AtPER1 could be induced by exogenous ABA and oxidative stress (H2O2 and hydroquinone). ABI3-mediated oxidative stress induction was dependent on the presence of an intact ARE element.


Breast Cancer Research | 2007

Genes harbouring susceptibility SNPs are differentially expressed in the breast cancer subtypes

Silje H. Nordgard; Fredrik E. Johansen; Grethe Grenaker Alnæs; Bjørn Naume; Anne Lise Børresen-Dale; Vessela N. Kristensen

Recently, genome-wide association studies of breast cancer revealed single nucleotide polymorphisms (SNPs) in five genes with novel association to susceptibility. While there is little doubt that the novel susceptibility markers produced from such highly powered studies are true, the mechanisms by which they cause the susceptibility remain undetermined. We have looked at the expression levels of the identified genes in tumours and found that they are highly significantly differentially expressed between the five established breast cancer subtypes. Also, a significant association between SNPs in these genes and their expression in tumours was seen as well as a significantly different frequency of the SNPs between the subtypes. This suggests that the observed genes are associated with different breast cancer subtypes, and may exert their effect through their expression in the tumours. Thus, future studies stratifying patients by their molecular subtypes may give much more power to classic case control studies, and genes of no or borderline significance may appear to be high-penetrant for certain subtypes and, therefore, be identifiable.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genetic variation in putative regulatory loci controlling gene expression in breast cancer

Vessela N. Kristensen; Hege Edvardsen; Anya Tsalenko; Silje H. Nordgard; Therese Sørlie; Roded Sharan; Aditya Vailaya; Amir Ben-Dor; Per Eystein Lønning; Sigbjørn Lien; Stig W. Omholt; Ann-Christine Syvänen; Zohar Yakhini; Anne Lise Børresen-Dale

Candidate single-nucleotide polymorphisms (SNPs) were analyzed for associations to an unselected whole genome pool of tumor mRNA transcripts in 50 unrelated patients with breast cancer. SNPs were selected from 203 candidate genes of the reactive oxygen species pathway. We describe a general statistical framework for the simultaneous analysis of gene expression data and SNP genotype data measured for the same cohort, which revealed significant associations between subsets of SNPs and transcripts, shedding light on the underlying biology. We identified SNPs in EGF, IL1A, MAPK8, XPC, SOD2, and ALOX12 that are associated with the expression patterns of a significant number of transcripts, indicating the presence of regulatory SNPs in these genes. SNPs were found to act in trans in a total of 115 genes. SNPs in 43 of these 115 genes were found to act both in cis and in trans. Finally, subsets of SNPs that share significantly many common associations with a set of transcripts (biclusters) were identified. The subsets of transcripts that are significantly associated with the same set of SNPs or to a single SNP were shown to be functionally coherent in Gene Ontology and pathway analyses and coexpressed in other independent data sets, suggesting that many of the observed associations are within the same functional pathways. To our knowledge, this article is the first study to correlate SNP genotype data in the germ line with somatic gene expression data in breast tumors. It provides the statistical framework for further genotype expression correlation studies in cancer data sets.

Collaboration


Dive into the Silje H. Nordgard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bjørn Naume

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar

Per Eystein Lønning

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar

Charles M. Perou

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Peter Van Loo

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge