Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke A. Schäfer is active.

Publication


Featured researches published by Silke A. Schäfer.


PLOS ONE | 2007

Polymorphisms within novel risk loci for type 2 diabetes determine β-cell function.

Harald Staiger; Fausto Machicao; Norbert Stefan; Otto Tschritter; Claus Thamer; Konstantinos Kantartzis; Silke A. Schäfer; Kerstin Kirchhoff; Andreas Fritsche; Hans-Ulrich Häring

Background Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or β-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity) with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761) were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or β-cell dysfunction were not assessed. Methodology/Principal Findings By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs), we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or β-cell dysfunction, respectively. Conclusions/Significance The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for β-cell dysfunction and, thus, might confer increased susceptibility of β-cells towards adverse environmental factors.


Obesity | 2007

High Visceral Fat Mass and High Liver Fat Are Associated with Resistance to Lifestyle Intervention

Claus Thamer; Juergen Machann; Norbert Stefan; Michael Haap; Silke A. Schäfer; Sonja Brenner; Konstantin Kantartzis; Claus D. Claussen; Fritz Schick; Hans Häring; Andreas Fritsche

Objective: High visceral adipose tissue (VAT) and high liver fat (LF) are associated with the metabolic syndrome and diabetes. We studied changes in these two fat depots during weight loss and analyzed whether VAT and LF at baseline predict the response to lifestyle intervention.


PLOS ONE | 2008

Polymorphisms within the Novel Type 2 Diabetes Risk Locus MTNR1B Determine β-Cell Function

Harald Staiger; Fausto Machicao; Silke A. Schäfer; Kerstin Kirchhoff; Konstantinos Kantartzis; Martina Guthoff; Günther Silbernagel; Norbert Stefan; Hans-Ulrich Häring; Andreas Fritsche

Background Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance. Methodology/Principal Findings We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion. Conclusions/Significance In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.


European Journal of Clinical Investigation | 2007

Lifestyle intervention in individuals with normal versus impaired glucose tolerance

Silke A. Schäfer; Konstantinos Kantartzis; Jürgen Machann; Christian Venter; Andreas M. Niess; Fritz Schick; Fausto Machicao; Hu Häring; Andreas Fritsche; Norbert Stefan

Background  Lifestyle intervention is effective in the prevention of type 2 diabetes in individuals with impaired glucose tolerance (IGT). It is currently unknown whether it has beneficial effects on metabolism to a similar extent, in individuals with normal glucose tolerance (NGT) compared to individuals with IGT.


Diabetes | 2009

Association of Type 2 Diabetes Candidate Polymorphisms in KCNQ1 With Incretin and Insulin Secretion

Karsten Müssig; Harald Staiger; Fausto Machicao; Kerstin Kirchhoff; Martina Guthoff; Silke A. Schäfer; Konstantinos Kantartzis; Günther Silbernagel; Norbert Stefan; Jens J. Holst; Baptist Gallwitz; Hans-Ulrich Häring; Andreas Fritsche

OBJECTIVE KCNQ1 gene polymorphisms are associated with type 2 diabetes. This linkage appears to be mediated by altered β-cell function. In an attempt to study underlying mechanisms, we examined the effect of four KCNQ1 single nucleotide polymorphisms (SNPs) on insulin secretion upon different stimuli. RESEARCH DESIGN AND METHODS We genotyped 1,578 nondiabetic subjects at increased risk of type 2 diabetes for rs151290, rs2237892, rs2237895, and rs2237897. All participants underwent an oral glucose tolerance test (OGTT); glucagon-like peptide (GLP)-1 and gastric inhibitory peptide secretion was measured in 170 participants. In 519 participants, a hyperinsulinemic-euglycemic clamp was performed, in 314 participants an intravenous glucose tolerance test (IVGTT), and in 102 subjects a hyperglycemic clamp combined with GLP-1 and arginine stimuli. RESULTS rs151290 was nominally associated with 30-min C-peptide levels during OGTT, first-phase insulin secretion, and insulinogenic index after adjustment in the dominant model (all P ≤ 0.01). rs2237892, rs2237895, and rs2237897 were nominally associated with OGTT-derived insulin secretion indexes (all P < 0.05). No SNPs were associated with β-cell function during intravenous glucose or GLP-1 administration. However, rs151290 was associated with glucose-stimulated gastric inhibitory polypeptide and GLP-1 increase after adjustment in the dominant model (P = 0.0042 and P = 0.0198, respectively). No associations were detected between the other SNPs and basal or stimulated incretin levels (all P ≥ 0.05). CONCLUSIONS Common genetic variation in KCNQ1 is associated with insulin secretion upon oral glucose load in a German population at increased risk of type 2 diabetes. The discrepancy between orally and intravenously administered glucose seems to be explained not by altered incretin signaling but most likely by changes in incretin secretion.


The Journal of Clinical Endocrinology and Metabolism | 2008

Variations in PPARD Determine the Change in Body Composition during Lifestyle Intervention: A Whole-Body Magnetic Resonance Study

Claus Thamer; Jürgen Machann; Norbert Stefan; Silke A. Schäfer; Fausto Machicao; Harald Staiger; Markku Laakso; Michael Böttcher; Claus D. Claussen; Fritz Schick; Andreas Fritsche; Hans-Ulrich Häring

CONTEXT We recently demonstrated that single-nucleotide polymorphisms (SNPs) in the peroxisome proliferator-activated receptor-delta gene (PPARD), i.e. rs1053049, rs6902123, and rs2267668, affect the improvement of mitochondrial function, aerobic physical fitness, and insulin sensitivity by lifestyle intervention (LI). OBJECTIVE The objective of the study was to determine whether the aforementioned PPARD SNPs influence the change in body composition and ectopic fat storage during LI. DESIGN A total of 156 subjects at an increased risk for type 2 diabetes were genotyped for rs1053049, rs6902123, and rs2267668 and participated in a LI program. Body fat depots, ectopic liver fat, and muscle volume of the leg were quantified using magnetic resonance spectroscopy and imaging. RESULTS With regard to body composition, carriers of the minor SNP alleles displayed reduced responses to LI, i.e. LI-induced reduction in adipose tissue mass (nonvisceral adipose tissue: rs1053049, P = 0.02; rs2267668, P = 0.04; visceral adipose tissue: rs1053049, P = 0.01) and hepatic lipids (rs1053049, P = 0.04; rs6902123, P = 0.001; independent of changes in adiposity) as well as LI-induced increase in relative muscle volume of the leg (rs1053049, P = 0.003; rs2267668, P = 0.009) were less pronounced in homo- and heterozygous carriers of the minor alleles as compared with homozygous carriers of the major alleles. CONCLUSION SNPs rs1053049, rs6902123, and rs2267668 in PPARD affect LI-induced changes in overall adiposity, hepatic fat storage, and relative muscle mass. Our findings provide a mechanistic explanation for the involvement of these genetic variations in the development of insulin resistance and type 2 diabetes.


Diabetes Research and Clinical Practice | 2011

New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms

Silke A. Schäfer; Fausto Machicao; Andreas Fritsche; Hans-Ulrich Häring; Konstantinos Kantartzis

Type 2 diabetes results from the inability of beta cells to increase insulin secretion sufficiently to compensate for insulin resistance. Insulin resistance is thought to result mainly from environmental factors, such as obesity. However, there is compelling evidence that the decline of both insulin sensitivity and insulin secretion have also a genetic component. Recent genome-wide association studies identified several novel risk genes for type 2 diabetes. The vast majority of these genes affect beta cell function by molecular mechanisms that remain unknown in detail. Nevertheless, we and others could show that a group of genes affect glucose-stimulated insulin secretion, a group incretin-stimulated insulin secretion (incretin sensitivity or secretion) and a group proinsulin-to-insulin conversion. The most important so far type 2 diabetes risk gene, TCF7L2, interferes with all three mechanisms. In addition to advancing knowledge in the pathophysiology of type 2 diabetes, the discovery of novel genetic determinants of diabetes susceptibility may help understanding of gene-environment, gene-therapy and gene-gene interactions. It was also hoped that it could make determination of the individual risk for type 2 diabetes feasible. However, the allelic relative risks of most genetic variants discovered so far are relatively low. Thus, at present, clinical criteria assess the risk for type 2 diabetes with greater sensitivity and specificity than the combination of all known genetic variants.


PLOS ONE | 2007

Cerebrocortical Beta Activity in Overweight Humans Responds to Insulin Detemir

Otto Tschritter; Anita M. Hennige; Hubert Preissl; Katarina Porubska; Silke A. Schäfer; Werner Lutzenberger; Fausto Machicao; Niels Birbaumer; Andreas Fritsche; Hans Häring

Background Insulin stimulates cerebrocortical beta and theta activity in lean humans. This effect is reduced in obese individuals indicating cerebrocortical insulin resistance. In the present study we tested whether insulin detemir is a suitable tool to restore the cerebral insulin response in overweight humans. This approach is based on studies in mice where we could recently demonstrate increased brain tissue concentrations of insulin and increased insulin signaling in the hypothalamus and cerebral cortex following peripheral injection of insulin detemir. Methodology/Principal Findings We studied activity of the cerebral cortex using magnetoencephalography in 12 lean and 34 overweight non-diabetic humans during a 2-step hyperinsulinemic euglycemic clamp (each step 90 min) with human insulin (HI) and saline infusion (S). In 10 overweight subjects we additionally performed the euglycemic clamp with insulin detemir (D). While human insulin administration did not change cerebrocortical activity relative to saline (p = 0.90) in overweight subjects, beta activity increased during D administration (basal 59±3 fT, 1st step 62±3 fT, 2nd step 66±5, p = 0.001, D vs. HI). As under this condition glucose infusion rates were lower with D than with HI (p = 0.003), it can be excluded that the cerebral effect is the consequence of a systemic effect. The total effect of insulin detemir on beta activity was not different from the human insulin effect in lean subjects (p = 0.78). Conclusions/Significance Despite cerebrocortical resistance to human insulin, insulin detemir increased beta activity in overweight human subjects similarly as human insulin in lean subjects. These data suggest that the decreased cerebral beta activity response in overweight subjects can be restored by insulin detemir.


Diabetes | 2010

Combined Risk Allele Score of Eight Type 2 Diabetes Genes Is Associated With Reduced First-Phase Glucose-Stimulated Insulin Secretion During Hyperglycemic Clamps

Leen M. 't Hart; Annemarie M. Simonis-Bik; Giel Nijpels; Timon W. van Haeften; Silke A. Schäfer; Jeanine J. Houwing-Duistermaat; Dorret I. Boomsma; Marlous J. Groenewoud; Erwin Reiling; Els C. van Hove; Michaela Diamant; Mark H. H. Kramer; Robert J. Heine; J. Antonie Maassen; Kerstin Kirchhoff; Fausto Machicao; Hans-Ulrich Häring; P. Eline Slagboom; Gonneke Willemsen; E.M.W. Eekhoff; Eco J. C. de Geus; Jacqueline M. Dekker; Andreas Fritsche

OBJECTIVE At least 20 type 2 diabetes loci have now been identified, and several of these are associated with altered β-cell function. In this study, we have investigated the combined effects of eight known β-cell loci on insulin secretion stimulated by three different secretagogues during hyperglycemic clamps. RESEARCH DESIGN AND METHODS A total of 447 subjects originating from four independent studies in the Netherlands and Germany (256 with normal glucose tolerance [NGT]/191 with impaired glucose tolerance [IGT]) underwent a hyperglycemic clamp. A subset had an extended clamp with additional glucagon-like peptide (GLP)-1 and arginine (n = 224). We next genotyped single nucleotide polymorphisms in TCF7L2, KCNJ11, CDKAL1, IGF2BP2, HHEX/IDE, CDKN2A/B, SLC30A8, and MTNR1B and calculated a risk allele score by risk allele counting. RESULTS The risk allele score was associated with lower first-phase glucose-stimulated insulin secretion (GSIS) (P = 7.1 × 10−6). The effect size was equal in subjects with NGT and IGT. We also noted an inverse correlation with the disposition index (P = 1.6 × 10−3). When we stratified the study population according to the number of risk alleles into three groups, those with a medium- or high-risk allele score had 9 and 23% lower first-phase GSIS. Second-phase GSIS, insulin sensitivity index and GLP-1, or arginine-stimulated insulin release were not significantly different. CONCLUSIONS A combined risk allele score for eight known β-cell genes is associated with the rapid first-phase GSIS and the disposition index. The slower second-phase GSIS, GLP-1, and arginine-stimulated insulin secretion are not associated, suggesting that especially processes involved in rapid granule recruitment and exocytosis are affected in the majority of risk loci.


BMC Medical Genetics | 2010

Association of obesity risk SNPs in PCSK1 with insulin sensitivity and proinsulin conversion.

Martin Heni; Axel Haupt; Silke A. Schäfer; Caroline Ketterer; Claus Thamer; Fausto Machicao; Norbert Stefan; Harald Staiger; Hans Häring; Andreas Fritsche

BackgroundProhormone convertase 1 is involved in maturation of peptides. Rare mutations in gene PCSK1, encoding this enzyme, cause childhood obesity and abnormal glucose homeostasis with elevated proinsulin concentrations. Common single nucleotide polymorphisms (SNPs) within this gene, rs6232 and rs6235, are associated with obesity. We studied whether these SNPs influence the prediabetic traits insulin resistance, β-cell dysfunction, or glucose intolerance.MethodsWe genotyped 1498 German subjects for SNPs rs6232 and rs6235 within PCSK1. The subjects were metabolically characterized by oral glucose tolerance test with glucose, insulin, proinsulin, and C-peptide measurements. A subgroup of 512 subjects underwent a hyperinsulinemic-euglycemic clamp.ResultsThe minor allele frequencies were 25.8% for SNP rs6235 and 6.0% for rs6232. After adjustment for sex and age, we found no association of SNPs rs6235 and rs6232 with BMI or other weight-related traits (all p ≥ 0.07). Both minor alleles, adjusted for sex, age, BMI and insulin sensitivity were associated with elevated AUCproinsulin and AUCproinsulin/AUCinsulin (rs6235: padditive model ≤ 0.009, effect sizes 8/8%, rs6232: pdominant model ≤ 0.01, effect sizes 10/21%). Insulin secretion was not affected by the variants (different secretion parameters, all p ≥ 0.08). The minor allele of SNP rs6232 was additionally associated with 15% higher OGTT-derived and 19% higher clamp-derived insulin sensitivity (pdom ≤ 0.0047), 4.5% lower HOMAIR (pdom = 0.02) and 3.5% lower 120-min glucose (pdom = 0.0003) independently of BMI and proinsulin conversion. SNP rs6235 was not associated with parameters of glucose metabolism.ConclusionsLike rare mutations in PCSK1, the more common variants tested determine glucose-stimulated proinsulin conversion, but not insulin secretion. In addition, rs6232, encoding the amino acid exchange N221D, influences insulin sensitivity and glucose homeostasis.

Collaboration


Dive into the Silke A. Schäfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Thamer

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Hu Häring

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fritz Schick

University of Tübingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge