Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke C. Wenzel is active.

Publication


Featured researches published by Silke C. Wenzel.


Natural Product Reports | 2013

Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature

Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Nature Biotechnology | 2007

Complete genome sequence of the myxobacterium Sorangium cellulosum.

Susanne Schneiker; Olena Perlova; Olaf Kaiser; Klaus Gerth; Aysel Alici; Matthias O. Altmeyer; Daniela Bartels; Thomas Bekel; Stefan Beyer; Edna Bode; Helge B. Bode; Christoph J. Bolten; Jomuna V. Choudhuri; Sabrina Doss; Yasser A. Elnakady; Bettina Frank; Lars Gaigalat; Alexander Goesmann; Carolin Groeger; Frank Gross; Lars Jelsbak; Lotte Jelsbak; Jörn Kalinowski; Carsten Kegler; Tina Knauber; Sebastian Konietzny; Maren Kopp; Lutz Krause; Daniel Krug; Bukhard Linke

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strains complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase–like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Molecular Microbiology | 2003

Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)‐oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca

Helge B. Bode; Bernd Zeggel; Barbara Silakowski; Silke C. Wenzel; Hans Reichenbach; Rolf Müller

Steroids, such as cholesterol, are synthesized in almost all eukaryotic cells, which use these triterpenoid lipids to control the fluidity and flexibility of their cell membranes. Bacteria rarely synthesize such tetracyclic compounds but frequently replace them with a different class of triterpenoids, the pentacyclic hopanoids. The intriguing mechanisms involved in triterpene biosynthesis have attracted much attention, resulting in extensive studies of squalene‐hopene cyclase in bacteria and (S)‐2,3‐oxidosqualene cyclases in eukarya. Nevertheless, almost nothing is known about steroid biosynthesis in bacteria. Only three steroid‐synthesizing bacterial species have been identified before this study. Here, we report on a variety of sterol‐producing myxobacteria. Stigmatella aurantiaca is shown to produce cycloartenol, the well‐known first cyclization product of steroid biosynthesis in plants and algae. Additionally, we describe the cloning of the first bacterial steroid biosynthesis gene, cas, encoding the cycloartenol synthase (Cas) of S. aurantiaca. Mutants of cas generated via site‐directed mutagenesis do not produce the compound. They show neither growth retardation in comparison with wild type nor any increase in ethanol sensitivity. The protein encoded by cas is most similar to the Cas proteins from several plant species, indicating a close evolutionary relationship between myxobacterial and eukaryotic steroid biosynthesis.


Science | 2015

Targeting DnaN for tuberculosis therapy using novel griselimycins

Angela Kling; Peer Lukat; Deepak Almeida; Armin Bauer; Evelyne Fontaine; Sylvie Sordello; Nestor Zaburannyi; Jennifer Herrmann; Silke C. Wenzel; Claudia König; Nicole C. Ammerman; María Belén Barrio; Kai Borchers; Florence Bordon-Pallier; Mark Brönstrup; Gilles Courtemanche; Martin Gerlitz; Michel Geslin; Peter Dr. Hammann; Dirk W. Heinz; Holger Hoffmann; Sylvie Klieber; Markus Kohlmann; Michael Kurz; Christine Lair; Hans Matter; Eric L. Nuermberger; Sandeep Tyagi; Laurent Fraisse; Jacques Grosset

New for old—TB drug development Tuberculosis (TB) is a global health threat for which there is only lengthy drug treatment. Patients need to consume multiple tablets over several months and frequently fail to complete their treatment. Consequently, drug-resistant strains of the pathogen have emerged, which add to the threat. Kling et al. revisited a natural product called griselimycin, extracted from the same organism that produced the prototype anti-TB drug, streptomycin. Unmodified griselimycin has poor pharmacological properties. However, one synthetic derivative had improved oral uptake and penetrated cells of the immune system that harbor the TB mycobacterium. In combination with other drugs, the griselimycin derivative showed high potency in mice with TB. Science, this issue p. 1106 A griselimycin-derived drug that blocks the DNA polymerase sliding clamp is a potent anti-tuberculosis lead. The discovery of Streptomyces-produced streptomycin founded the age of tuberculosis therapy. Despite the subsequent development of a curative regimen for this disease, tuberculosis remains a worldwide problem, and the emergence of multidrug-resistant Mycobacterium tuberculosis has prioritized the need for new drugs. Here we show that new optimized derivatives from Streptomyces-derived griselimycin are highly active against M. tuberculosis, both in vitro and in vivo, by inhibiting the DNA polymerase sliding clamp DnaN. We discovered that resistance to griselimycins, occurring at very low frequency, is associated with amplification of a chromosomal segment containing dnaN, as well as the ori site. Our results demonstrate that griselimycins have high translational potential for tuberculosis treatment, validate DnaN as an antimicrobial target, and capture the process of antibiotic pressure-induced gene amplification.


ChemBioChem | 2005

Structure and Biosynthesis of Myxochromides S1–3 in Stigmatella aurantiaca: Evidence for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis†

Silke C. Wenzel; Brigitte Kunze; Gerhard Höfle; Barbara Silakowski; Maren Scharfe; Helmut Blöcker; Rolf Müller

The myxobacterium Stigmatella aurantiaca DW4/3–1 harbours an astonishing variety of secondary metabolic gene clusters, at least two of which were found by gene inactivation experiments to be connected to the biosynthesis of previously unknown metabolites. In this study, we elucidate the structures of myxochromides S1–3, novel cyclic pentapeptide natural products possessing unsaturated polyketide side chains, and identify the corresponding biosynthetic gene locus, made up of six nonribosomal peptide synthetase modules. By analyzing the deduced substrate specificities of the adenylation domains, it is shown that module 4 is most probably skipped during the biosynthetic process. The polyketide synthase MchA harbours only one module and is presumably responsible for the formation of the variable complete polyketide side chains. These data indicate that MchA is responsible for an unusual iterative polyketide chain assembly.


Nucleic Acids Research | 2008

Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition

Jun Fu; Silke C. Wenzel; Olena Perlova; Junping Wang; Frank Gross; Zhiru Tang; Yulong Yin; A. Francis Stewart; Rolf Müller; Youming Zhang

Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes.


ChemBioChem | 2004

Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus

Jeroen S. Dickschat; Silke C. Wenzel; Helge B. Bode; Rolf Müller; Stefan Schulz

The volatiles emitted from cell cultures of myxobacterium Myxococcus xanthus were collected by use of a closed‐loop stripping apparatus (CLSA) and analyzed by GC‐MS. Two new natural products, (S)‐9‐methyldecan‐3‐ol ((S)‐1) and 9‐methyldecan‐3‐one (2), were identified and synthesized, together with other aliphatic ketones and alcohols, and terpenes. Biosynthesis of the two main components (S)‐1 and 2 was examined in feeding experiments carried out with the wild‐type strain DK1622 and two mutant strains JD300 and DK11017, which are impaired in the degradation pathway from leucine to isovaleryl‐SCoA. Isovaleryl‐SCoA is used as a starter, followed by chain elongation with two malonate units. Subsequent use of methyl malonate and decarboxylation leads to (S)‐1 and 2. Furthermore, 3,3‐dimethylacrylic acid (DMAA) can be used by the mutant strain to form isovaleryl‐SCoA, which corroborates recent data on the detection of a novel variety of the mevalonate pathway giving rise to isovaleryl‐SCoA from HMGCoA.


Natural Product Reports | 2009

The impact of genomics on the exploitation of the myxobacterial secondary metabolome

Silke C. Wenzel; Rolf Müller

Covering: 2000 to 2009 Myxobacteria are one of the most outstanding resources for microbial natural products. This review focuses on the impact of genomics on the evaluation and exploitation of their biosynthetic potential.


Journal of the American Chemical Society | 2008

Stereochemical Determination and Complex Biosynthetic Assembly of Etnangien, a Highly Potent RNA Polymerase Inhibitor from the Myxobacterium Sorangium cellulosum

Dirk Menche; Fatih Arikan; Olena Perlova; Nicole Horstmann; Wiebke Ahlbrecht; Silke C. Wenzel; Rolf Jansen; Herbert Irschik; Rolf Müller

A potent novel analogue of the natural macrolide antibiotic etnangien, a structurally unique RNA polymerase inhibitor from myxobacteria, is reported. It may be readily obtained from fermentation broths of Sorangium cellulosum and shows high antibiotic activity, comparable to that of etnangien. However, it is much more readily available than the notoriously labile authentic natural product itself. Importantly, it is stable under neutral conditions, allowing for elaborate NMR measurements for assignment of the 12 hydroxyl- and methyl-bearing stereogenic centers. The full absolute and relative stereochemistries of these complex polyketides were determined by a combination of extensive high-field NMR studies, including J-based configuration analysis, molecular modeling, and synthetic derivatization in combination with an innovative method based on biosynthetic studies of this polyketide which is also presented here. A first look into the solution conformation and 3D structure of these promising macrolide antibiotics is reported. Finally, the complete biosynthetic gene cluster was analyzed in detail, revealing a highly unusual and complex trans-AT type polyketide biosynthesis, which does not follow colinearity rules, most likely performs programmed iteration as well as module skipping, and exhibits HMG-CoA box-directed methylation.


Microbial Ecology | 2007

Bacteria of the Roseobacter clade show potential for secondary metabolite production

Torben Martens; Lone Gram; Hans-Peter Grossart; Daniel Kessler; Rolf Müller; Meinhard Simon; Silke C. Wenzel; Thorsten Brinkhoff

Members of the Roseobacter clade are abundant and widespread in marine habitats and have very diverse metabolisms. Production of acylated homoserine lactones (AHL) and secondary metabolites, e.g., antibiotics has been described sporadically. This prompted us to screen 22 strains of this group for production of signaling molecules, antagonistic activity against bacteria of different phylogenetic groups, and the presence of genes encoding for nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS), representing enzymes involved in the synthesis of various pharmaceutically important natural products. The screening approach for NRPS and PKS genes was based on polymerase chain reaction (PCR) with degenerate primers specific for conserved sequence motifs. Additionally, sequences from whole genome sequencing projects of organisms of the Roseobacter clade were considered. Obtained PCR products were cloned, sequenced, and compared with genes of known function. With the PCR approach genes showing similarity to known NRPS and PKS genes were found in seven and five strains, respectively, and three PKS and NRPS sequences from genome sequencing projects were obtained. Three strains exhibited antagonistic activity and also showed production of AHL. Overall production of AHL was found in 10 isolates. Phylogenetic analysis of the 16S rRNA gene sequences of the tested organisms showed that several of the AHL-positive strains clustered together. Three strains were positive for three or four categories tested, and were found to be closely related within the genus Phaeobacter. The presence of a highly similar hybrid PKS/NRPS gene locus of unknown function in sequenced genomes of the Roseobacter clade plus the significant similarity of gene fragments from the strains studied to these genes argues for the functional requirement of the encoded hybrid PKS/NRPS complex. Our screening results therefore suggest that the Roseobacter clade is indeed employing PKS/NRPS biochemistry and should thus be further studied as a potential and largely untapped source of secondary metabolites.

Collaboration


Dive into the Silke C. Wenzel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge B. Bode

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Höfle

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Fu

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge