Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke Sachse is active.

Publication


Featured researches published by Silke Sachse.


PLOS Biology | 2006

Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo

Richard Benton; Silke Sachse; Stephen W. Michnick; Leslie B. Vosshall

Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors.


Nature Neuroscience | 1999

The glomerular code for odor representation is species specific in the honeybee Apis mellifera

C. Giovanni Galizia; Silke Sachse; Angelika Rappert; Randolf Menzel

Odors are coded by glomerular activity patterns in the insect antennal lobe (AL) and in the mammalian olfactory bulb. We measured glomerular responses to 30 different odors in the AL of honeybees using calcium-sensitive dyes. By subsequently staining glomeruli and identifying individual glomerular outlines, we were able to compare the patterns between animals. Regardless of whether the odors were mixtures or pure substances, environmental odors or pheromones, their representations were highly conserved among individuals. Therefore, it may be possible to create a functional atlas of the AL in which particular molecular receptive ranges are attributed to each glomerulus.


Cell | 2012

A Conserved Dedicated Olfactory Circuit for Detecting Harmful Microbes in Drosophila

Marcus C. Stensmyr; Hany K.M. Dweck; Abu Farhan; Irene Ibba; Antonia Strutz; Latha Mukunda; Jeanine Linz; Veit Grabe; Kathrin Steck; Sofia Lavista-Llanos; Dieter Wicher; Silke Sachse; Markus Knaden; Paul G. Becher; Yoichi Seki; Bill S. Hansson

Flies, like all animals, need to find suitable and safe food. Because the principal food source for Drosophila melanogaster is yeast growing on fermenting fruit, flies need to distinguish fruit with safe yeast from yeast covered with toxic microbes. We identify a functionally segregated olfactory circuit in flies that is activated exclusively by geosmin. This microbial odorant constitutes an ecologically relevant stimulus that alerts flies to the presence of harmful microbes. Geosmin activates only a single class of sensory neurons expressing the olfactory receptor Or56a. These neurons target the DA2 glomerulus and connect to projection neurons that respond exclusively to geosmin. Activation of DA2 is sufficient and necessary for aversion, overrides input from other olfactory pathways, and inhibits positive chemotaxis, oviposition, and feeding. The geosmin detection system is a conserved feature in the genus Drosophila that provides flies with a sensitive, specific means of identifying unsuitable feeding and breeding sites.


European Journal of Neuroscience | 1999

The spatial representation of chemical structures in the antennal lobe of honeybees : steps towards the olfactory code

Silke Sachse; Angelika Rappert; Cosmas Giovanni Galizia

Odours are represented by specific ensembles of activated glomeruli in a combinatorial manner within the olfactory bulb of vertebrates or the antennal lobe (AL) of insects. Here, we optically measured glomerular calcium activities in vivo in the honeybee Apis mellifera during olfactory stimulation with 36 pure chemicals differing systematically in carbon chain length (C‐5–10) and functional group (aldehyde, ketone, alcohol, carboxylic acid and alkane). We show their glomerular representations in 38 morphologically identified glomeruli out of the honeybees 160. We measured the molecular receptive range of identified glomeruli averaging up to 21 individuals. Of the 38 glomeruli measured, 23 show maximal activity in a specific range of chain length. Glomeruli preferentially responding to a functional group are also always broadly tuned to particular chain lengths. Furthermore, glomeruli with similar response spectra are often direct neighbours. The results allow conclusions about the interactions between olfactory receptors and odour molecules, and about the AL network.


Current Biology | 2002

Genetically Expressed Cameleon in Drosophila melanogaster Is Used to Visualize Olfactory Information in Projection Neurons

André Fiala; Thomas Spall; Sören Diegelmann; Beate Eisermann; Silke Sachse; Jean-Marc Devaud; Erich Buchner; C. Giovanni Galizia

Complex external stimuli such as odorants are believed to be internally represented in the brain by spatiotemporal activity patterns of extensive neuronal ensembles. These activity patterns can be recorded by optical imaging techniques. However, optical imaging with conventional fluorescence dyes usually does not allow for resolving the activity of biologically defined groups of neurons. Therefore, specifically targeting reporter molecules to neuron populations of common genetic identity is an important goal. We report the use of the genetically encoded calcium-sensitive fluorescence protein cameleon 2.1 in the Drosophila brain. We visualized odorant-evoked intracellular calcium concentration changes in selectively labeled olfactory projection neurons both postsynaptically in the antennal lobe, the primary olfactory neuropil, and presynaptically in the mushroom body calyx, a structure involved in olfactory learning and memory. As a technical achievement, we show that calcium imaging with a genetically encoded fluorescence probe is feasible in a brain in vivo. This will allow one to combine Drosophilas advanced genetic tools with the physiological analysis of brain function. Moreover, we report for the first time optical imaging recordings in synaptic regions of the Drosophila mushroom body calyx and antennal lobe. This provides an important step for the use of Drosophila as a model system in olfaction.


European Journal of Neuroscience | 2003

The coding of odour‐intensity in the honeybee antennal lobe: local computation optimizes odour representation

Silke Sachse; C. Giovanni Galizia

We investigated strategies involved in odour intensity coding by the primary olfactory centre of insects, the antennal lobe (AL), the structural and functional analogue of the olfactory bulb. Using calcium imaging in the honeybee, we simultaneously measured the projection neuron output responses and a compound signal dominated by receptor neuron input in identified olfactory glomeruli to odours spanning seven log units of concentration. A comparison of the two processing levels indicates that the intercellular computation within the AL modulates and contrast‐enhances the primary olfactory signals. As a result the AL network optimizes the olfactory code: odour representation is improved at lower concentrations, the relative activity of olfactory glomeruli allows encoding odour quality over up to four log‐unit concentrations, and odour‐intensity is reliably represented in the overall excitation across AL.


Neuron | 2007

Activity-Dependent Plasticity in an Olfactory Circuit

Silke Sachse; Erroll Rueckert; Andreas Keller; Ryuichi Okada; Nobuaki Tanaka; Kei Ito; Leslie B. Vosshall

Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system.


Current Biology | 2013

Olfactory Preference for Egg Laying on Citrus Substrates in Drosophila

Hany K.M. Dweck; Shimaa A.M. Ebrahim; Sophie H. Kromann; Deni Bown; Ylva Hillbur; Silke Sachse; Bill S. Hansson; Marcus C. Stensmyr

BACKGROUND Egg-laying animals, such as insects, ensure the survival of their offspring by depositing their eggs in favorable environments. To identify suitable oviposition sites, insects, such as the vinegar fly Drosophila melanogaster, assess a complex range of features. The fly selectively lays eggs in fermenting fruit. However, the precise cues and conditions that trigger oviposition remain unclear, including whether flies are also selective for the fruit substrate itself. RESULTS Here, we demonstrate that flies prefer Citrus fruits as oviposition substrate. Flies detect terpenes characteristic of these fruits via a single class of olfactory sensory neurons, expressing odorant receptor Or19a. These neurons are necessary and sufficient for selective oviposition. In addition, we find that the Citrus preference is an ancestral trait, presumably representing an adaptation toward fruits found within the native African habitat. Moreover, we show that endoparasitoid wasps that parasitize fly larvae are strongly repelled by the smell of Citrus, as well as by valencene, the primary ligand of Or19a. Finally, larvae kept in substrates enriched with valencene suffer a reduced risk of parasitism. CONCLUSIONS Our results demonstrate that a single dedicated olfactory pathway determines oviposition fruit substrate choice. Moreover, our work suggests that the flys fruit preference--reflected in the functional properties of the identified neuron population--stem from a need to escape parasitism from endoparasitoid wasps.


Neural Computation | 2004

Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

Roberto Fdez. Galán; Silke Sachse; C. Giovanni Galizia; Andreas V. M. Herz

The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body.


Journal of Neurophysiology | 2010

Physiological and Morphological Characterization of Local Interneurons in the Drosophila Antennal Lobe

Yoichi Seki; Jiirgen Rybak; Dieter Wicher; Silke Sachse; Bill S. Hansson

The Drosophila antennal lobe (AL) has become an excellent model for studying early olfactory processing mechanisms. Local interneurons (LNs) connect a large number of glomeruli and are ideally positioned to increase computational capabilities of odor information processing in the AL. Although the neural circuit of the Drosophila AL has been intensively studied at both the input and the output level, the internal circuit is not yet well understood. An unambiguous characterization of LNs is essential to remedy this lack of knowledge. We used whole cell patch-clamp recordings and characterized four classes of LNs in detail using electrophysiological and morphological properties at the single neuron level. Each class of LN displayed unique characteristics in intrinsic electrophysiological properties, showing differences in firing patterns, degree of spike adaptation, and amplitude of spike afterhyperpolarization. Notably, one class of LNs had characteristic burst firing properties, whereas the others were tonically active. Morphologically, neurons from three classes innervated almost all glomeruli, while LNs from one class innervated a specific subpopulation of glomeruli. Three-dimensional reconstruction analyses revealed general characteristics of LN morphology and further differences in dendritic density and distribution within specific glomeruli between the different classes of LNs. Additionally, we found that LNs labeled by a specific enhancer trap line (GAL4-Krasavietz), which had previously been reported as cholinergic LNs, were mostly GABAergic. The current study provides a systematic characterization of olfactory LNs in Drosophila and demonstrates that a variety of inhibitory LNs, characterized by class-specific electrophysiological and morphological properties, construct the neural circuit of the AL.

Collaboration


Dive into the Silke Sachse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge