Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silke Schwarz is active.

Publication


Featured researches published by Silke Schwarz.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function

Silke Schwarz; Alexander F. Elsaesser; Ludwig Koerber; Eva Goldberg-Bockhorn; Andreas M. Seitz; Christian Bermueller; Lutz Dürselen; Anita Ignatius; Roman Breiter; Nicole Rotter

One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage‐specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three‐dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D‐cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage‐specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright


International Journal of Oral Science | 2014

Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion

Silke Schwarz; Ralf Huss; Michaela Schulz-Siegmund; Breda Vogel; Sven Brandau; Stephan Lang; Nicole Rotter

Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage.


Biomaterials | 2015

Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo

Héctor Martínez Ávila; Eva-Maria Feldmann; Mieke M. Pleumeekers; Luc Nimeskern; Willy Kuo; Willem C. de Jong; Silke Schwarz; Ralph Müller; Jeanine Hendriks; Nicole Rotter; Gerjo J.V.M. van Osch; Kathryn S. Stok; Paul Gatenholm

Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured in vitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50 ± 25 μm. Furthermore, endotoxin analysis and in vitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15 ± 0.09 EU/ml) and non-cytotoxic (cell viability: 97.8 ± 4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage in vitro and in vivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses.


Journal of Biomaterials Applications | 2013

Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle

Eva-Maria Feldmann; Johan Sundberg; B Bobbili; Silke Schwarz; Paul Gatenholm; Nicole Rotter

In this study, we investigated the effects of human primary chondrocytes, derived from routine septorhino- and otoplasties on a novel nondegradable biomaterial. This biomaterial, porous bacterial nanocellulose, is produced by Gluconacetobacter xylinus. Porosity is generated by paraffin beads embedded during the fermentation process. Human primary chondrocytes were able to adhere to bacterial nanocellulose and produce cartilaginous matrix proteins such as aggrecan (after 14 days) and collagen type II (after 21 days) in the presence of differentiation medium. Cells were located within the pores and in a dense cell layer covering the surface of the biomaterial. Cells were able to re-differentiate, as cell shape and extra cellular matrix gene expression showed a chondrogenic phenotype in three-dimensional bacterial nanocellulose culture. Collagen type I and versican expression decreased during three-dimensional culture. Variations in pore sizes of 150–300 µm and 300–500 µm did not influence cartilaginous extra cellular matrix synthesis. Varying seeding densities from 9.95 × 102 to 1.99 × 103 cells/mm2 and 3.98 × 103 cells/mm2 did not result in differences in quality of extra cellular matrix neo-synthesis. Our results demonstrated that both nasal and auricular chondrocytes are equally suitable to synthesize new extra cellular matrix on bacterial nanocellulose. Therefore, we propose both cell sources in combination with bacterial nanocellulose as promising candidates for the special needs of auricular reconstruction.


Tissue Engineering Part A | 2014

In vitro cytotoxicity and in vivo effects of a decellularized xenogeneic collagen scaffold in nasal cartilage repair.

Alexander F. Elsaesser; Christian Bermueller; Silke Schwarz; Ludwig Koerber; Roman Breiter; Nicole Rotter

Tissue engineering is considered a promising future option for nasal cartilage repair. However, until now, an optimal material has not been identified for this specific purpose. Therefore, the aim of this study was to analyze a recently developed decellularized collagen matrix, which has promising material properties for septal cartilage repair. A tetrazolium dye based cytotoxicity assay using rat nasal septum chondrocytes was performed to examine the cytotoxic effects of decellularized cartilage matrices. Unseeded scaffolds as well as scaffolds seeded with chondrocytes were implanted in nasal septum defects in Lewis rats to investigate the cellular and humoral inflammatory responses in the surrounding tissue as well as the effect on the formation of nasal septum perforations. Samples were analyzed histochemically and immunohistochemically after 1, 4, and 12 weeks. Although cells for the cytotoxicity assay were cultured under serum-free conditions for 24 h to increase sensitivity, no cytotoxic effects were detected. Histological and immunohistochemical evidence displayed that the implanted scaffolds induced minor macrophage and lymphocyte infiltration and were well integrated at the contact site to native cartilage and between the mucosal membranes. The biocompatibility index revealed only slightly irritating effects during the study period. Septal perforations were prevented efficiently. In summary, our results provide evidence that decellularized xenogeneic collagen scaffolds are suitable for cartilage tissue engineering. The scaffolds were integrated well into septal cartilage defects without causing a strong inflammatory reaction and prevented the development of nasal septum perforations. Therefore, we envision the possibility to use them in nasal cartilage repair in the future.


Cell & Bioscience | 2016

Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies.

Alexander F. Elsaesser; Silke Schwarz; H. Joos; Ludwig Koerber; Rolf E. Brenner; Nicole Rotter

BackgroundProgenitor cells display interesting features for tissue repair and reconstruction. In the last years, such cells have been identified in different cartilage types. In this study, we isolated a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features by outgrowth from human nasal septum cartilage. These putative progenitor cells were comparatively characterized with mesenchymal stem cells (MSC) and human nasal septum chondrocytes with respect to their cellular characteristics as well as surface marker profile using flow cytometric analyses. Differentiation capacity was evaluated on protein and gene expression levels.ResultsThe migrative subpopulation differentiated into osteogenic and chondrogenic lineages with distinct differences to chondrocytes and MSC. Cells of the migrative subpopulation showed an intermediate surface marker profile positioned between MSC and chondrocytes. Significant differences were found for CD9, CD29, CD44, CD90, CD105 and CD106. The cells possessed a high migratory ability in a Boyden chamber assay and responded to chemotactic stimulation. To evaluate their potential use in tissue engineering applications, a decellularized septal cartilage matrix was either seeded with cells from the migrative subpopulation or chondrocytes. Matrix production was demonstrated immunohistochemically and verified on gene expression level. Along with secretion of matrix metalloproteinases, cells of the migrative subpopulation migrated faster into the collagen matrix than chondrocytes, while synthesis of cartilage specific matrix was comparable.ConclusionsCells of the migrative subpopulation, due to their migratory characteristics, are a potential cell source for in vivo regeneration of nasal cartilage. The in vivo mobilization of nasal cartilage progenitor cells is envisioned to be the basis for in situ tissue engineering procedures, aiming at the use of unseeded biomaterials which are able to recruit local progenitor cells for cartilage regeneration.


Methods of Molecular Biology | 2012

Human salivary gland stem cells: isolation, propagation, and characterization.

Silke Schwarz; Nicole Rotter

Stem cells are of outstanding interest for a variety of applications in regenerative medicine. The identification and characterization of novel tissue sources in order to reduce donor site morbidity and to provide specific cells in clinically applicable numbers have led to the detection of stem cells in almost all adult tissues. Salivary glands are of specific interest to our lab, as these tissues are easily accessible for the head and neck surgeon with low donor site morbidity. On the other hand, they possess an endocrine and exocrine function and thus play a very specific role in the human body. Stem cell identity however can only be demonstrated using a combination of different methods in vitro, as there is not a single marker or feature allowing for definite identification of such cells. In this chapter, we provide a comprehensive summary of our experimental methods for the isolation and characterization of human salivary gland stem cells in vitro.


PLOS ONE | 2014

Magnetic Resonance Imaging of the Ear for Patient- Specific Reconstructive Surgery

Luc Nimeskern; Eva-Maria Feldmann; Willy Kuo; Silke Schwarz; Eva Goldberg-Bockhorn; Susanne Dürr; Ralph Müller; Nicole Rotter; Kathryn S. Stok

Introduction Like a fingerprint, ear shape is a unique personal feature that should be reconstructed with a high fidelity during reconstructive surgery. Ear cartilage tissue engineering (TE) advantageously offers the possibility to use novel 3D manufacturing techniques to reconstruct the ear, thus allowing for a detailed auricular shape. However it also requires detailed patient-specific images of the 3D cartilage structures of the patient’s intact contralateral ear (if available). Therefore the aim of this study was to develop and evaluate an imaging strategy for acquiring patient-specific ear cartilage shape, with sufficient precision and accuracy for use in a clinical setting. Methods and Materials Magnetic resonance imaging (MRI) was performed on 14 volunteer and six cadaveric auricles and manually segmented. Reproducibility of cartilage volume (Cg.V), surface (Cg.S) and thickness (Cg.Th) was assessed, to determine whether raters could repeatedly define the same volume of interest. Additionally, six cadaveric auricles were harvested, scanned and segmented using the same procedure, then dissected and scanned using high resolution micro-CT. Correlation between MR and micro-CT measurements was assessed to determine accuracy. Results Good inter- and intra-rater reproducibility was observed (precision errors <4% for Cg.S and <9% for Cg.V and Cg.Th). Intraclass correlations were good for Cg.V and Cg.S (>0.82), but low for Cg.Th (<0.23) due to similar average Cg.Th between patients. However Pearson’s coefficients showed that the ability to detect local cartilage shape variations is unaffected. Good correlation between clinical MRI and micro-CT (r>0.95) demonstrated high accuracy. Discussion and Conclusion This study demonstrated that precision and accuracy of the proposed method was high enough to detect patient-specific variation in ear cartilage geometry. The present study provides a clinical strategy to access the necessary information required for the production of 3D ear scaffolds for TE purposes, including detailed patient-specific shape. Furthermore, the protocol is applicable in daily clinical practice with existing infrastructure.


PLOS ONE | 2016

Cryopreservation of Endothelial Cells in Various Cryoprotective Agents and Media – Vitrification versus Slow Freezing Methods

Achim von Bomhard; Alexander Elsässer; Lucas M. Ritschl; Silke Schwarz; Nicole Rotter

Vitrification of endothelial cells (MHECT-5) has not previously been compared with controlled slow freezing methods under standardized conditions. To identify the best cryopreservation technique, we evaluated vitrification and standardized controlled-rate -1°C/minute cell freezing in a -80°C freezer and tested four cryoprotective agents (CPA), namely dimethyl sulfoxide (DMSO), ethylene glycol (EG), propylene glycol (PG), and glycerol (GLY), and two media, namely Dulbeccos modified Eagle medium Ham’s F-12 (DMEM)and K+-modified TiProtec (K+TiP), which is a high-potassium-containing medium. Numbers of viable cells in proliferation were evaluated by the CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corporation, Mannheim, Germany). To detect the exact frozen cell number per cryo vial, DNA content was measured by using Hoechst 33258 dye prior to analysis. Thus, results could be evaluated unconstrained by absolute cell number. Thawed cells were cultured in 25 cm2 cell culture flasks to confluence and examined daily by phase contrast imaging. With regard to cell recovery immediately after thawing, DMSO was the most suitable CPA combined with K+TiP in vitrification (99 ±0.5%) and with DMEM in slow freezing (92 ±1.6%). The most viable cells in proliferation after three days of culture were obtained in cells vitrificated by using GLY with K+TiP (308 ±34%) and PG with DMEM in slow freezing (280 ±27%).


Investigative Ophthalmology & Visual Science | 2015

The Influence of Oxygen on the Proliferative Capacity and Differentiation Potential of Lacrimal Gland-Derived Mesenchymal Stem Cells.

Mathias Roth; Kristina Spaniol; Claus Kordes; Silke Schwarz; Sonja Mertsch; Dieter Häussinger; Nicole Rotter; Gerd Geerling; Stefan Schrader

PURPOSE The application of lacrimal gland-derived mesenchymal stem cells (LG-MSC) for the regeneration of lacrimal gland tissue could result in a novel therapy for dry-eye syndrome. To optimize the culture conditions, the purpose of this study was to evaluate the influence of low oxygen on phenotype, differentiation potential, proliferative, and regenerative capacity of murine LG-MSC. METHODS Murine LG-MSC were cultured in 21% and 5% oxygen and characterized by flow cytometry, cell sorter assisted proliferation-, and colony forming unit-assays. Reactive oxygen species (ROS) levels as well as lineage differentiation were evaluated. The effect of conditioned medium of LG-MSC from both oxygen conditions (CM MSC 21%, respectively, CM MSC 5%) on lacrimal gland epithelial cells (LG-EC) was examined in wound healing and proliferation assays. RESULTS Cells under both culture conditions revealed differentiation potential and presented a MSC-specific flow cytometric phenotype. In 5% oxygen, cells yielded less ROS, showed a stable morphology, higher colony forming potential, and an increased proliferation capacity. Five percent oxygen significantly increased the number of CD44+ LG-MSC. Furthermore, CM MSC 5% significantly enhanced migration and proliferation in LG-EC. CONCLUSIONS In vitro expansion in low oxygen preserves the proliferation capacity and differentiation potential of LG-MSC and increases the effects of conditioned medium on migration and proliferation in LG-EC. Therefore, expansion in low oxygen seems to be an excellent method, to obtain vital MSC. Also, an increased number of LG-MSC expressing CD44 was observed under low oxygen, which might be a valuable marker to identify a potent MSC subpopulation.

Collaboration


Dive into the Silke Schwarz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Gatenholm

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludwig Koerber

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Roman Breiter

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Héctor Martínez Ávila

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge