Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sillas Hadjiloucas is active.

Publication


Featured researches published by Sillas Hadjiloucas.


IEEE Transactions on Microwave Theory and Techniques | 1999

Measurements of leaf water content using terahertz radiation

Sillas Hadjiloucas; L.S. Karatzas; John W. Bowen

A novel technique for the noninvasive continuous measurement of leaf water content is presented. The technique is based on transmission measurements of terahertz radiation with a null-balance quasi-optical transmissometer operating at 94 GHz. A model for the propagation of terahertz radiation through leaves is presented. This, in conjunction with leaf thickness information determined separately, may be used to quantitatively relate transmittance measurements to leaf water content. Measurements using a dispersive Fourier transform spectrometer in the range of 100 GHz-500 GHz using Phormium tenax and Fatsia japonica leaves are also reported.


IEEE Transactions on Microwave Theory and Techniques | 2000

Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies

J.W. Digby; C.E. McIntosh; G. M. Parkhurst; B.M. Towlson; Sillas Hadjiloucas; John W. Bowen; Roger D. Pollard; Robert E. Miles; D.P. Steenson; L.S. Karatzas; N. J. Cronin; S.R. Davies

The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 /spl mu/m to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE/sub 10/ mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32/spl deg/ elevated 35/spl deg/ above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23/spl deg/ and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.


IEEE Transactions on Circuits and Systems | 2013

Fractional Order Modeling of Large Three-Dimensional RC Networks

Roberto Kawakami Harrop Galvão; Sillas Hadjiloucas; Karl Heinz Kienitz; Henrique Mohallem Paiva; Rubens Junqueira Magalhães Afonso

An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.


Journal of The Optical Society of America A-optics Image Science and Vision | 2002

Analysis of spectroscopic measurements of leaf water content at terahertz frequencies using linear transforms

Sillas Hadjiloucas; Roberto Kawakami Harrop Galvão; John W. Bowen

We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen-Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen-Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.


Pattern Recognition Letters | 2006

Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms

Tom Froese; Sillas Hadjiloucas; Roberto Kawakami Harrop Galvão; Victor M. Becerra; Clarimar José Coelho

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MIT-BIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data was presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network.


Physics in Medicine and Biology | 2002

Preliminary results on the non-thermal effects of 200-350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies

Sillas Hadjiloucas; M S Chahal; John W. Bowen

We report preliminary results from studies of biological effects induced by non-thermal levels of non-ionizing electromagnetic radiation. Exponentially growing Saccharomyces cerevisiae yeast cells grown on dry media were exposed to electromagnetic fields in the 200-350 GHz frequency range at low power density to observe possible non-thermal effects on the microcolony growth. Exposure to the electromagnetic field was conducted over 2.5 h. The data from exposure and control experiments were grouped into either large-, medium- or small-sized microcolonies to assist in the accurate assessment of growth. The three groups showed significant differences in growth between exposed and control microcolonies. A statistically significant enhanced growth rate was observed at 341 GHz. Growth rate was assessed every 30 min via time-lapse photography. Possible interaction mechanisms are discussed, taking into account Frohlichs hypothesis.


Optics Express | 2003

Optimal discrimination and classification of THz spectra in the wavelet domain.

Roberto Kawakami Harrop Galvão; Sillas Hadjiloucas; John W. Bowen; Clarimar José Coelho

In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems.


Measurement Science and Technology | 2000

Feedback dew-point sensor utilizing optimally cut plastic optical fibres

Sillas Hadjiloucas; J. J. Irvine; D.A. Keating

A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.


Measurement Science and Technology | 2005

Subspace system identification framework for the analysis of multimoded propagation of THz-transient signals

Roberto Kawakami Harrop Galvão; Sillas Hadjiloucas; Victor M. Becerra; John W. Bowen

We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.


IEEE Transactions on Microwave Theory and Techniques | 2004

Comparison of subspace and ARX models of a waveguide's terahertz transient response after optimal wavelet filtering

Sillas Hadjiloucas; Roberto Kawakami Harrop Galvão; Victor M. Becerra; John W. Bowen; Rainer Martini; M. Brucherseifer; H. P. M. Pellemans; P. H. Bolivar; H. Kurz

A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.

Collaboration


Dive into the Sillas Hadjiloucas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Kawakami Harrop Galvão

Instituto Tecnológico de Aeronáutica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrique Mohallem Paiva

Instituto Tecnológico de Aeronáutica

View shared research outputs
Top Co-Authors

Avatar

Karl Heinz Kienitz

Instituto Tecnológico de Aeronáutica

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge