Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvana Andreescu is active.

Publication


Featured researches published by Silvana Andreescu.


Analytical Chemistry | 2011

Paper bioassay based on ceria nanoparticles as colorimetric probes.

Maryna Ornatska; Erica Sharpe; Daniel Andreescu; Silvana Andreescu

We report the first use of redox nanoparticles of cerium oxide as colorimetric probes in bioanalysis. The method is based on changes in the physicochemical properties of ceria nanoparticles, used here as chromogenic indicators, in response to the analyte. We show that these particles can be fully integrated in a paper-based bioassay. To construct the sensor, ceria nanoparticles and glucose oxidase were coimmobilized onto filter paper using a silanization procedure. In the presence of glucose, the enzymatically generated hydrogen peroxide induces a visual color change of the ceria nanoparticles immobilized onto the bioactive sensing paper, from white-yellowish to dark orange, in a concentration-dependent manner. A detection limit of 0.5 mM glucose with a linear range up to 100 mM and a reproducibility of 4.3% for n = 11 ceria paper strips were obtained. The assay is fully reversible and can be reused for at least 10 consecutive measurement cycles, without significant loss of activity. Another unique feature is that it does not require external reagents, as all the sensing components are fixed onto the paper platform. The bioassay can be stored for at least 79 days at room temperature while maintaining the same analytical performance. An example of analytical application was demonstrated for the detection of glucose in human serum. The results demonstrate the potential of this type of nanoparticles as novel components in the development of robust colorimetric bioassays.


Analytical and Bioanalytical Chemistry | 2009

Enzyme-functionalized mesoporous silica for bioanalytical applications.

Cristina Ispas; Igor M. Sokolov; Silvana Andreescu

AbstractThe unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented. FigureEnzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.


Free Radical Biology and Medicine | 2011

Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia.

Ana Y. Estevez; S. Pritchard; K. Harper; J.W. Aston; A. Lynch; J.J. Lucky; J.S. Ludington; P. Chatani; W.P. Mosenthal; James C. Leiter; Silvana Andreescu; Joseph S. Erlichman

Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~15% reductions in the concentrations of superoxide (O(2)(•-)) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke.


Analytical Chemistry | 2010

Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor.

John Njagi; Mykyta M. Chernov; James C. Leiter; Silvana Andreescu

We developed a novel implantable enzyme-based carbon fiber biosensor for in vivo monitoring of dopamine. The biosensor is fabricated using tyrosinase immobilized in a biocompatible matrix consisting of a biopolymer, chitosan and ceria-based metal oxides, deposited onto the surface of a carbon fiber microelectrode with a diameter of approximately 100 microm. Tyrosinase catalyzes the conversion of dopamine to o-dopaquinone, and the reduction of o-dopaquinone, which requires a low potential difference, was detected electrochemically. The role of each component in the sensing layer was systematically investigated in relation to the analytical performance of the biosensor. In its optimal configuration, the biosensor demonstrated a detection limit of 1 nM dopamine, a linear range of 5 orders of magnitude between 10 nM and 220 microM, a sensitivity of 14.2 nA x microM(-1), and good selectivity against ascorbic acid, uric acid, serotonin, norepinephrine, epinephrine, and 3,4-dihydroxy-l-phenylalanine (L-DOPA). The system provided continuous, real time monitoring of electrically stimulated dopamine release in the brain of an anesthetized rat. Levels of dopamine up to 1.69 microM were measured. This new implantable dopamine biosensor provides an alternative to fast scan cyclic voltammetry for in vivo monitoring of dopamine.


ieee international conference on services computing | 2015

Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges

Moeen Hassanalieragh; Alex Page; Tolga Soyata; Gaurav Sharma; Mehmet K. Aktas; Gonzalo Mateos; Burak Kantarci; Silvana Andreescu

Among the panoply of applications enabled by the Internet of Things (IoT), smart and connected health care is a particularly important one. Networked sensors, either worn on the body or embedded in our living environments, make possible the gathering of rich information indicative of our physical and mental health. Captured on a continual basis, aggregated, and effectively mined, such information can bring about a positive transformative change in the health care landscape. In particular, the availability of data at hitherto unimagined scales and temporal longitudes coupled with a new generation of intelligent processing algorithms can: (a) facilitate an evolution in the practice of medicine, from the current post facto diagnose-and-treat reactive paradigm, to a proactive framework for prognosis of diseases at an incipient stage, coupled with prevention, cure, and overall management of health instead of disease, (b) enable personalization of treatment and management options targeted particularly to the specific circumstances and needs of the individual, and (c) help reduce the cost of health care while simultaneously improving outcomes. In this paper, we highlight the opportunities and challenges for IoT in realizing this vision of the future of health care.


Talanta | 2002

Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents

Silvana Andreescu; Thierry Noguer; Vasile Magearu; Jean-Louis Marty

A screen-printed biosensor for the detection of pesticides in water miscible organic solvents is described based on the use of p-aminophenyl acetate as acetylcholinesterase substrate. The oxidation of p-aminophenol, product of the enzymatic reaction was monitored at 100 mV vs. Ag/AgCl screen-printed reference electrode. Miscible organic solvents as ethanol and acetonitrile were tested. The acetylcholinesterase (AChE) was immobilised on a screen-printed electrode surface by entrapment in a PVA-SbQ polymer and the catalytic activity of immobilised AChE was studied in the presence of different percentages of organic solvents in buffer solution. The sensor shows good characteristics when experiments were performed in concentrations of organic solvents below 10%. No significant differences were observed when working with 1 and 5% acetonitrile in the reaction media. Detection limits as low as 1.91x10(-8) M paraoxon and 1.24x10(-9) M chlorpyrifos ethyl oxon were obtained when experiments are carried out in 5% acetonitrile.


Analytical Chemistry | 2012

Colorimetric Paper Bioassay for the Detection of Phenolic Compounds

Ramiz S. J. Alkasir; Maryna Ornatska; Silvana Andreescu

A new type of paper based bioassay for the colorimetric detection of phenolic compounds including phenol, bisphenol A, catechol and cresols is reported. The sensor is based on a layer-by-layer (LbL) assembly approach formed by alternatively depositing layers of chitosan and alginate polyelectrolytes onto filter paper and physically entrapping the tyrosinase enzyme in between these layers. The sensor response is quantified as a color change resulting from the specific binding of the enzymatically generated quinone to the multilayers of immobilized chitosan on the paper. The color change can be quantified with the naked eye but a digitalized picture can also be used to provide more sensitive comparison to a calibrated color scheme. The sensor was optimized with respect to the number of layers, pH, enzyme, chitosan and alginate amounts. The colorimetric response was concentration dependent, with a detection limit of 0.86 (±0.1) μg/L for each of the phenolic compounds tested. The response time required for the sensor to reach steady-state color varied between 6 and 17 min depending on the phenolic substrate. The sensor showed excellent storage stability at room temperature for several months (92% residual activity after 260 days storage) and demonstrated good functionality in real environmental samples. A procedure to mass-produce the bioactive sensors by inkjet printing the LbL layers of polyelectrolyte and enzyme on paper is demonstrated.


Pure and Applied Chemistry | 2004

Trends and challenges in biochemical sensors for clinical and environmental monitoring

Silvana Andreescu; Omowunmi A. Sadik

Biochemical sensors have emerged as a dynamic technique for qualitative and quantitative analysis of different analytes in clinical diagnosis, environmental monitoring, and food and process control. The need for a low-cost, reliable, ultra-sensitive, and rapid sensor continues to grow as the complexity of application areas increases. New biosensing techniques are emerging due to the need for shorter sample preparation protocols. Such novel biosensor designs make field and bed-site clinical testing simpler with substantial decrease in costs per sample throughputs. In this paper, we will review the recent trends and challenges in clinical and environmental biosensors. The review will focus on immunological, nucleic acid, and cell-based clinical and biological sensors. Special emphasis will be placed on the approaches used for immobilization or biological reagents and low-cost electrochemical biosensors. The promising biosensors for rapid diagnosis of cancer or HIV are also discussed.


Biosensors and Bioelectronics | 2010

Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A

Ramiz S. J. Alkasir; Mallikarjunarao Ganesana; Yu-Ho Won; Lia Stanciu; Silvana Andreescu

We developed electrochemical biosensors based on enzyme functionalized nanoparticles of different compositions for the detection of bisphenol A. We utilized for the first time magnetic nickel nanoparticles as an enzyme immobilization platform and electrode material to construct screen-printing enzyme biosensors for bisphenol A. We compared the analytical performance of these sensors with those based on iron oxide (Fe(3)O(4)) and gold nanoparticles. The proposed biosensor format exhibited fast and sensitive amperometric responses to bisphenol A with a response time of less then 30s. Among the three configurations, nickel provided comparable or better characteristics in terms of detection limit and sensitivity than Fe(3)O(4) and gold nanoparticles. The biosensors were characterized by good reproducibility, stability of more than 100 assays (residual activity for nickel was 98%) and a wide linear range which spanned from 9.1 × 10(-7) to 4.8 × 10(-5)M for nickel, 2.2 × 10(-8) to 4.0 × 10(-5)M for Fe(3)O(4) and 4.2 × 10(-8) to 3.6 × 10(-5)M for gold. The highest sensitivity was obtained with nickel. The detection limits for the three types of biosensors were: 7.1 × 10(-9), 8.3 × 10(-9) and 1 × 10(-8)M for nickel, Fe(3)O(4) and gold nanoparticles in that order, respectively. These results demonstrate that nickel nanoparticles can be successfully used in the construction of electrochemical enzyme sensors for the detection of phenolic compounds.


Analytical Letters | 2012

Review: Recent Developments in Enzyme-Based Biosensors for Biomedical Analysis

Cristina Ispas; Georgeta Crivat; Silvana Andreescu

The need for simple, rapid, cost-effective, and portable screening methods has boosted the development of practical biosensors with applications in clinical monitoring, and diagnosis of disease. Compared with traditional analytical methods, enzyme-based bioanalytical devices have several distinct advantages such as high sensitivity and specificity, portability, cost-effectiveness, and the possibilities for miniaturization and mass production. Additionally, they can be developed for point-of-care diagnostic testing. This paper reviews recent advances in the development of enzyme biosensors, design characteristics, performances, and applications with a focus on electrochemical and optical sensors. Recent emerging technologies and innovative biosensing designs, such as nanosensors, paper based-sensors, lab-on-a-chip, biochips, and microfluidic devices are discussed. Specific applications in bioanalysis, clinical diagnosis, and pharmacology are discussed.

Collaboration


Dive into the Silvana Andreescu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akhtar Hayat

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge