Silvere Pagant
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvere Pagant.
Plant Physiology | 2014
Thomas Vain; Elizabeth Faris Crowell; Hélène Timpano; Eric Biot; Thierry Desprez; Nasim Mansoori; Luisa M. Trindade; Silvere Pagant; Stéphanie Robert; Herman Höfte; Martine Gonneau; Samantha Vernhettes
An endo-1,4-b-D-glucanase is part of the primary cell wall cellulose synthase complex (CSC) in the plasma membrane and plays a role in the trafficking of the CSC. Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis in plants or bacteria also requires the activity of an endo-1,4-β-d-glucanase, the exact function of which in the synthesis process is not known. Here, we show, to our knowledge for the first time, that a leaky mutation in the Arabidopsis (Arabidopsis thaliana) membrane-bound endo-1,4-β-d-glucanase KORRIGAN1 (KOR1) not only caused reduced CSC movement in the plasma membrane but also a reduced cellulose synthesis inhibitor-induced accumulation of CSCs in intracellular compartments. This suggests a role for KOR1 both in the synthesis of cellulose microfibrils and in the intracellular trafficking of CSCs. Next, we used a multidisciplinary approach, including live cell imaging, gel filtration chromatography analysis, split ubiquitin assays in yeast (Saccharomyces cerevisiae NMY51), and bimolecular fluorescence complementation, to show that, in contrast to previous observations, KOR1 is an integral part of the primary cell wall CSC in the plasma membrane.
The EMBO Journal | 2012
Leslie Kung; Silvere Pagant; Eugene Futai; Jennifer G. D'Arcangelo; Roy Buchanan; John Dittmar; Robert J. D. Reid; Rodney Rothstein; Susan Hamamoto; Erik L. Snapp; Randy Schekman; Elizabeth A. Miller
Vesicle budding from the endoplasmic reticulum (ER) employs a cycle of GTP binding and hydrolysis to regulate assembly of the COPII coat. We have identified a novel mutation (sec24‐m11) in the cargo‐binding subunit, Sec24p, that specifically impacts the GTP‐dependent generation of vesicles in vitro. Using a high‐throughput approach, we defined genetic interactions between sec24‐m11 and a variety of trafficking components of the early secretory pathway, including the candidate COPII regulators, Sed4p and Sec16p. We defined a fragment of Sec16p that markedly inhibits the Sec23p‐ and Sec31p‐stimulated GTPase activity of Sar1p, and demonstrated that the Sec24p‐m11 mutation diminished this inhibitory activity, likely by perturbing the interaction of Sec24p with Sec16p. The consequence of the heightened GTPase activity when Sec24p‐m11 is present is the generation of smaller vesicles, leading to accumulation of ER membranes and more stable ER exit sites. We propose that association of Sec24p with Sec16p creates a novel regulatory complex that retards the GTPase activity of the COPII coat to prevent premature vesicle scission, pointing to a fundamental role for GTP hydrolysis in vesicle release rather than in coat assembly/disassembly.
Genetics | 2009
Alenka Čopič; Mariana Dorrington; Silvere Pagant; Justine Barry; Marcus C. S. Lee; Indira Singh; John L. Hartman; Elizabeth A. Miller
To gain new mechanistic insight into ER homeostasis and the biogenesis of secretory proteins, we screened a genomewide collection of yeast mutants for defective intracellular retention of the ER chaperone, Kar2p. We identified 87 Kar2p-secreting strains, including a number of known components in secretory protein modification and sorting. Further characterization of the 73 nonessential Kar2p retention mutants revealed roles for a number of novel gene products in protein glycosylation, GPI-anchor attachment, ER quality control, and retrieval of escaped ER residents. A subset of these mutants, required for ER retrieval, included the GET complex and two novel proteins that likely function similarly in membrane insertion of tail-anchored proteins. Finally, the variant histone, Htz1p, and its acetylation state seem to play an important role in maintaining ER retrieval pathways, suggesting a surprising link between chromatin remodeling and ER homeostasis.
PLOS ONE | 2012
Trevor L. Starr; Silvere Pagant; Chao-Wen Wang; Randy Schekman
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.
Current Biology | 2015
Silvere Pagant; Alexander Wu; Samuel Edwards; Frances Diehl; Elizabeth A. Miller
BACKGROUND Incorporation of secretory proteins into ER-derived vesicles involves recognition of cytosolic signals by the COPII coat protein, Sec24. Additional cargo diversity is achieved through cargo receptors, which include the Erv14/Cornichon family that mediates export of transmembrane proteins despite the potential for such clients to directly interact with Sec24. The molecular function of Erv14 thus remains unclear, with possible roles in COPII binding, membrane domain chaperoning, and lipid organization. RESULTS Using a targeted mutagenesis approach to define the mechanism of Erv14 function, we identify conserved residues in the second transmembrane domain of Erv14 that mediate interaction with a subset of Erv14 clients. We further show that interaction of Erv14 with a novel cargo-binding surface on Sec24 is necessary for efficient trafficking of all of its clients. However, we also determine that some Erv14 clients also directly engage an adjacent cargo-binding domain of Sec24, suggesting a novel mode of dual interaction between cargo and coat. CONCLUSIONS We conclude that Erv14 functions as a canonical cargo receptor that couples membrane proteins to the COPII coat, but that maximal export requires a bivalent signal that derives from motifs on both the cargo protein and Erv14. Sec24 can thus be considered a coincidence detector that binds simultaneously to multiple signals to drive packaging of polytopic membrane proteins. This mode of dual signal binding to a single coat protein might serve as a general mechanism to trigger efficient capture, or may be specifically employed in ER export to control deployment of nascent proteins.
Journal of Biological Chemistry | 2008
Silvere Pagant; Ethan Y. Brovman; John J. Halliday; Elizabeth A. Miller
ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate substrate translocation across biological membranes. Our goal was to define the intramolecular interactions that contribute to quaternary assembly of a eukaryotic ABC transporter and determine how the architecture of this protein influences its biogenesis within the secretory pathway. We used chemical cross-linking approaches to map interdomain interactions in the yeast ABC transporter, Yor1p, which functions as a pleiotropic drug pump at the plasma membrane. We have defined interactions between the two nucleotide-binding domains (NBDs) and between the NBDs and specific intracellular loops (ICLs) that are consistent with current structural models of bacterial ABC exporters. Furthermore, we detected relatively weak NBD-NBD and ICL-ICL interactions that may correspond to transient sites of cross-talk between domains required for coupling of ATP hydrolysis with substrate translocation. Mutation of a key residue in ICL2 caused misassembly of the altered protein, leading to increased sensitivity to the mitochondrial poison, oligomycin. We identified intragenic suppressing mutations that rescued the oligomycin resistance associated with this aberrant protein and demonstrated that the suppressing mutations restored multiple interdomain interfaces. Together, our biochemical and genetic approaches contribute to a greater understanding of the architecture of this important class of proteins and provide insight into the quality control surveillance that regulates their biogenesis and deployment within the eukaryotic cell.
Journal of Biological Chemistry | 2010
Silvere Pagant; John J. Halliday; Christos Kougentakis; Elizabeth A. Miller
ATP-binding cassette (ABC) transporters play pivotal physiological roles in substrate transport across membranes, and defective assembly of these proteins can cause severe disease associated with improper drug or ion flux. The yeast protein Yor1p is a useful model to study the biogenesis of ABC transporters; deletion of a phenylalanine residue in the first nucleotide-binding domain (NBD1) causes misassembly and retention in the endoplasmic reticulum (ER) of the resulting protein Yor1p-ΔF670, similar to the predominant disease-causing allele in humans, CFTR-ΔF508. Here we describe two novel Yor1p mutants, G278R and I1084P, which fail to assemble and traffic similar to Yor1p-ΔF670. These mutations are located in the two intracellular loops (ICLs) that interface directly with NBD1, and thus disrupt a functionally important structural module. We isolated 2 second-site mutations, F270S and R1168M, which partially correct the folding injuries associated with the G278R, I1084P, and ΔF670 mutants and reinstate their trafficking. The position of both corrective mutations at the cytoplasmic face of a transmembrane helix suggests that they restore biogenesis by influencing the behavior of the transmembrane domains rather than by direct restoration of the ICL1-ICL4-NBD1 structural module. Given the conserved topology of many ABC transporters, our findings provide new understanding of functionally important inter-domain interactions and suggest new potential avenues for correcting folding defects caused by abrogation of those domain interfaces.
Eukaryotic Cell | 2011
Francisco Pina; Allyson F. O'Donnell; Silvere Pagant; Hai Lan Piao; John P. Miller; Stanley Fields; Elizabeth A. Miller; Martha S. Cyert
ABSTRACT Hph1 and Hph2 are homologous integral endoplasmic reticulum (ER) membrane proteins required for Saccharomyces cerevisiae survival under environmental stress conditions. To investigate the molecular functions of Hph1 and Hph2, we carried out a split-ubiquitin-membrane-based yeast two-hybrid screen and identified their interactions with Sec71, a subunit of the Sec63/Sec62 complex, which mediates posttranslational translocation of proteins into the ER. Hph1 and Hph2 likely function in posttranslational translocation, as they interact with other Sec63/Sec62 complex subunits, i.e., Sec72, Sec62, and Sec63. hph1Δ hph2Δ cells display reduced vacuole acidification; increased instability of Vph1, a subunit of vacuolar proton ATPase (V-ATPase); and growth defects similar to those of mutants lacking V-ATPase activity. sec71Δ cells exhibit similar phenotypes, indicating that Hph1/Hph2 and the Sec63/Sec62 complex function during V-ATPase biogenesis. Hph1/Hph2 and the Sec63/Sec62 complex may act together in this process, as vacuolar acidification and Vph1 stability are compromised to the same extent in hph1Δ hph2Δ and hph1Δ hph2Δ sec71Δ cells. In contrast, loss of Pkr1, an ER protein that promotes posttranslocation assembly of Vph1 with V-ATPase subunits, further exacerbates hph1Δ hph2Δ phenotypes, suggesting that Hph1 and Hph2 function independently of Pkr1-mediated V-ATPase assembly. We propose that Hph1 and Hph2 aid Sec63/Sec62-mediated translocation of specific proteins, including factors that promote efficient biogenesis of V-ATPase, to support yeast cell survival during environmental stress.
Current Biology | 2015
Jennifer G. D’Arcangelo; Jonathan Crissman; Silvere Pagant; Alenka Čopič; Catherine F. Latham; Erik L. Snapp; Elizabeth A. Miller
Eukaryotic protein secretion requires efficient and accurate delivery of diverse secretory and membrane proteins. This process initiates in the ER, where vesicles are sculpted by the essential COPII coat. The Sec13p subunit of the COPII coat contributes to membrane scaffolding, which enforces curvature on the nascent vesicle. A requirement for Sec13p can be bypassed when traffic of lumenally oriented membrane proteins is abrogated. Here we sought to further explore the impact of cargo proteins on vesicle formation. We show that efficient ER export of the p24 family of proteins is a major driver of the requirement for Sec13p. The scaffolding burden presented by the p24 complex is met in part by the cargo adaptor Lst1p, which binds to a subset of cargo, including the p24 proteins. We propose that the scaffolding function of Lst1p is required to generate vesicles that can accommodate difficult cargo proteins that include large oligomeric assemblies and asymmetrically distributed membrane proteins. Vesicles that contain such cargoes are also more dependent on scaffolding by Sec13p, and may serve as a model for large carrier formation in other systems.
Journal of Biological Chemistry | 2010
Raymond J. Louie; Silvere Pagant; Ji Young Youn; John J. Halliday; Gregory Huyer; Susan Michaelis; Elizabeth A. Miller
ATP-binding cassette (ABC) transporters are integral membrane proteins that couple ATP binding/hydrolysis with the transport of hydrophilic substrates across lipid barriers. Deletion of Phe-670 in the first nucleotide-binding domain (NBD1) of the yeast ABC transporter, Yor1p, perturbs interdomain associations, reduces functionality, and hinders proper transport to the plasma membrane. Functionality of Yor1p-ΔF was restored upon co-expression of a peptide containing wild-type NBD1. To gain insight into the biogenesis of this important class of proteins, we defined the requirements for this rescue. We show that a misfolding lesion in NBD1 of the full-length protein is a prerequisite for functional rescue by exogenous NBD1, which is mediated by physical replacement of the dysfunctional domain by the soluble NBD1. This association does not restore trafficking of Yor1p-ΔF but instead confers catalytic activity to the small population of Yor1p-ΔF that escapes to the plasma membrane. An important coupling between the exogenous NBD1 and ICL4 within full-length aberrant Yor1p-ΔF is required for functional rescue but not for the physical interaction between the two polypeptides. Together, our genetic and biochemical data reveal that it is possible to modulate activity of ABC transporters by physically replacing dysfunctional domains.