Silvia A. Fuertes Marraco
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia A. Fuertes Marraco.
PLOS ONE | 2012
Lukas Baitsch; Amandine Legat; Leticia Barba; Silvia A. Fuertes Marraco; Jean-Paul Rivals; Petra Baumgaertner; Céline Christiansen-Jucht; Hanifa Bouzourene; Donata Rimoldi; Hanspeter Pircher; Nathalie Rufer; Maurice Matter; Olivier Michielin; Daniel E. Speiser
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.
Nature Immunology | 2013
Daniel T. Utzschneider; Amandine Legat; Silvia A. Fuertes Marraco; Lucie Carrié; Immanuel F. Luescher; Daniel E. Speiser; Dietmar Zehn
During chronic infection, pathogen-specific CD8+ T cells upregulate expression of molecules such as the inhibitory surface receptor PD-1, have diminished cytokine production and are thought to undergo terminal differentiation into exhausted cells. Here we found that T cells with memory-like properties were generated during chronic infection. After transfer into naive mice, these cells robustly proliferated and controlled a viral infection. The reexpanded T cell populations continued to have the exhausted phenotype they acquired during the chronic infection. Thus, the cells underwent a form of differentiation that was stably transmitted to daughter cells. We therefore propose that during persistent infection, effector T cells stably differentiate into a state that is optimized to limit viral replication without causing overwhelming immunological pathology.
Frontiers in Immunology | 2013
Amandine Legat; Daniel E. Speiser; Hanspeter Pircher; Dietmar Zehn; Silvia A. Fuertes Marraco
Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed “exhaustion.” Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of “exhaustion.” Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (“chronic”) antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.
Frontiers in Immunology | 2015
Silvia A. Fuertes Marraco; Natalie J. Neubert; Grégory Verdeil; Daniel E. Speiser
Inhibitory receptors (iRs) are frequently associated with “T cell exhaustion”. However, the expression of iRs is also dependent on T cell differentiation and activation. Therapeutic blockade of various iRs, also referred to as “checkpoint blockade”, is showing unprecedented results in the treatment of cancer patients. Consequently, the clinical potential in this field is broad, calling for increased research efforts and rapid refinements in the understanding of iR function. In this review, we provide an overview on the significance of iR expression for the interpretation of T cell functionality. We summarize how iRs have been strongly associated with “T cell exhaustion” and illustrate the parallel evidence on the importance of T cell differentiation and activation for the expression of iRs. The differentiation subsets of CD8 T cells (naïve, effector, and memory cells) show broad and inherent differences in iR expression, while activation leads to strong upregulation of iRs. Therefore, changes in iR expression during an immune response are often concomitant with T cell differentiation and activation. Sustained expression of iRs in chronic infection and in the tumor microenvironment likely reflects a specialized T cell differentiation. In these situations of prolonged antigen exposure and chronic inflammation, T cells are “downtuned” in order to limit tissue damage. Furthermore, we review the novel “checkpoint blockade” treatments and the potential of iRs as biomarkers. Finally, we provide recommendations for the immune monitoring of patients to interpret iR expression data combined with parameters of activation and differentiation of T cells.
Science Translational Medicine | 2015
Silvia A. Fuertes Marraco; Charlotte Soneson; Laurène Cagnon; Philippe O. Gannon; Mathilde Allard; Samia Abed Maillard; Nicole Montandon; Nathalie Rufer; Sophie Waldvogel; Mauro Delorenzi; Daniel E. Speiser
The yellow fever vaccine induces a CD8+ T stem cell–like memory subset with a naïve-like profile that persists long term. Yellow fever vaccine induces long-term naïve-like memory In the ongoing quest to find better models of human disease, humans themselves are frequently overlooked. New vaccines for viral infections have hit barriers in translating attempts to induce protective immunity by producing long-lasting memory T cell responses. Now, Fuertes Marraco et al. report that individuals who receive the current yellow fever vaccine develop just that. They found that yellow fever–specific CD8+ T cells with a naïve-like phenotype persisted in vaccinated individuals for more than 25 years. These cells were capable of self-renewal and resembled the stem cell–like memory subset. Thus, by studying vaccinated individuals and building on their own success, researcher may learn—in people—what exactly makes long-term memory T cells tick. Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8+ T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8+ T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8+ T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8+ T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8+ T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell–like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8+ Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8+ T cells in humans.
PLOS ONE | 2011
Silvia A. Fuertes Marraco; Clare L. Scott; Annette Ives; Slavica Masina; David Vremec; Elisa S. Jansen; Lorraine A. O'Reilly; Pascal Schneider; Nicolas Fasel; Ken Shortman; Andreas Strasser; Hans Acha-Orbea
Background DC are activated by pathogen-associated molecular patterns (PAMPs), and this is pivotal for the induction of adaptive immune responses. Thereafter, the clearance of activated DC is crucial to prevent immune pathology. While PAMPs are of major interest for vaccine science due to their adjuvant potential, it is unclear whether and how PAMPs may affect DC viability. We aimed to elucidate the possible apoptotic mechanisms that control activated DC lifespan in response to PAMPs, particularly in vivo. Methodology/Principal Findings We report that polyinosinic:polycytidylic acid (PolyIC, synthetic analogue of dsRNA) induces dramatic apoptosis of mouse splenic conventional DC (cDC) in vivo, predominantly affecting the CD8α subset, as shown by flow cytometry-based analysis of splenic DC subsets. Importantly, while Bim deficiency conferred only minor protection, cDC depletion was prevented in mice lacking Bim plus one of three other BH3-only proteins, either Puma, Noxa or Bid. Furthermore, we show that Type I Interferon (IFN) is necessary and sufficient for DC death both in vitro and in vivo, and that TLR3 and MAVS co-operate in IFNß production in vivo to induce DC death in response to PolyIC. Conclusions/Significance These results demonstrate for the first time in vivo that apoptosis restricts DC lifespan following activation by PolyIC, particularly affecting the CD8α cDC subset. Such DC apoptosis is mediated by the overlapping action of pro-apoptotic BH3-only proteins, including but not solely involving Bim, and is driven by Type I IFN. While Type I IFNs are important anti-viral factors, CD8α cDC are major cross-presenting cells and critical inducers of CTL. We discuss such paradoxical finding on DC death with PolyIC/Type I IFN. These results could contribute to understand immunosuppression associated with chronic infection, and to the optimization of DC-based therapies and the clinical use of PAMPs and Type I IFNs.
Frontiers in Immunology | 2012
Silvia A. Fuertes Marraco; Frederic Grosjean; Anaïs Duval; Muriel Rosa; Christine Lavanchy; Devika Ashok; Sergio Haller; Luc A. Otten; Quynh Giao Steiner; Patrick Descombes; Christian A. Luber; Felix Meissner; Matthias Mann; Lajos Szeles; Walter Reith; Hans Acha-Orbea
Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.
European Journal of Immunology | 2014
Devika Ashok; Steffen Schuster; Catherine Ronet; Muriel Rosa; Vanessa Mack; Christine Lavanchy; Silvia A. Fuertes Marraco; Nicolas Fasel; Kenneth M. Murphy; Fabienne Tacchini-Cottier; Hans Acha-Orbea
Leishmania major infection induces self‐healing cutaneous lesions in C57BL/6 mice. Both IL‐12 and IFN‐γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3−/−) mice (C57BL/6 background) that lack the major IL‐12 producing and cross‐presenting CD8α+ and CD103+ DC subsets. Batf3−/− mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3−/− mice secreted less IFN‐γ, but more Th2‐ and Th17‐type cytokines, mirrored by increased serum IgE and Leishmania‐specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α+ DCs isolated from lymph nodes of L. major‐infected mice induced significantly more IFN‐γ secretion by L. major‐stimulated immune T cells than CD103+ DCs. We next developed CD11c‐diptheria toxin receptor: Batf3−/− mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf‐3‐dependent DCs from day 17 or wild‐type mice depleted of cross‐presenting DCs from 17–19 days after infection maintained significantly larger lesions similar to mice whose Batf‐3‐dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf‐3‐dependent DCs in protection against L. major.
Frontiers in Immunology | 2016
Timothy Murray; Silvia A. Fuertes Marraco; Petra Baumgaertner; Natacha Bordry; Laurène Cagnon; Alena Donda; Pedro Romero; Grégory Verdeil; Daniel E. Speiser
A major limiting factor in the success of immunotherapy is tumor infiltration by CD8+ T cells, a process that remains poorly understood. In the present study, we characterized homing receptors expressed by human melanoma-specific CD8+ T cells. Our data reveal that P-selectin binding and expression of the retention integrin, very late antigen (VLA)-1, by vaccine-induced T cells correlate with longer patient survival. Furthermore, we demonstrate that CD8+VLA-1+ tumor-infiltrating lymphocytes (TILs) are highly enriched in melanoma metastases in diverse tissues. VLA-1-expressing TIL frequently co-express CD69 and CD103, indicating tissue-resident memory T cells (TRM) differentiation. We employed a mouse model of melanoma to further characterize VLA-1-expressing TIL. Our data show that VLA-1+ TRM develop in murine tumors within 2 weeks, where they exhibit increased activation status, as well as superior effector functions. In addition, in vivo blockade of either VLA-1 or CD103 significantly impaired control of subcutaneous tumors. Together, our data indicate that VLA-1+ TRM develop in tumors and play an important role in tumor immunity, presenting novel targets for the optimization of cancer immunotherapy.
Journal of Immunological Methods | 2012
Silvia A. Fuertes Marraco; Petra Baumgaertner; Amandine Legat; Nathalie Rufer; Daniel E. Speiser
Artificial antigen-presenting cells (aAPC) are widely used for both clinical and basic research applications, as cell-based or bead-based scaffolds, combining immune synapse components of interest. Adequate and controlled preparation of aAPCs is crucial for subsequent immunoassays. We reveal that certain proteins such as activatory anti-CD3 antibody can be out-competed by other proteins (e.g. inhibitory receptor ligands such as PDL1:Fc) during the coating of aAPC beads, under the usually performed coating procedures. This may be misleading, as we found that decreased CD8 T cell activity was not due to inhibitory receptor triggering but rather because of unexpectedly low anti-CD3 antibody density on the beads upon co-incubation with inhibitory receptor ligands. We propose an optimized protocol, and emphasize the need to quality-control the coating of proteins on aAPC beads prior to their use in immunoassays.