Sílvia Abril
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sílvia Abril.
Environmental Entomology | 2007
Sílvia Abril; Jordi Oliveras; Crisanto Gómez
Abstract We analyzed the foraging activity and the dietary spectrum of the Argentine ant (Linepithema humile Mayr) and select native ants on cork oaks from Mediterranean open cork oak (Quercus suber) secondary forests. The study areas included invaded and noninvaded zones in close proximity. The Argentine ant’s daily foraging activity was correlated to the abiotic factors studied, whereas the seasonal foraging activity was related not only to the variations in the average air temperature, but also to the trophic needs of the colony. Argentine ant workers focused their attention on protein foods during the queens’ oviposition periods and during the larvae development phase, and on carbohydrate foods, such as honeydew, when males and workers were hatching. There were no significant differences over the entire year in the quantity of liquid food collected by the Argentine ant workers in comparison with the native ants studied. The solid diet of the Argentine ant on cork oaks is composed of insects, most of which are aphids. Our results have clear applications for control methods based on toxic baits in the invaded natural ecosystems of the Iberian Peninsula.
Journal of Insect Science | 2010
Sílvia Abril; Jordi Oliveras; Crisanto Gómez
Abstract The influence of temperature on the developmental times and survival of insects can largely determine their distribution. For invasive species, like the Argentine ant, Linepithema humile Mayr (Hymenoptera: Formicidae), these data are essential for predicting their potential range based on mechanistic models. In the case of this species, such data are too scarce and incomplete to make accurate predictions based on its physiological needs. This research provides comprehensive new data about brood survival and developmental times at a wide range of temperatures under laboratory conditions. Temperature affected both the complete brood development from egg to adult worker and each of the immature stages separately. The higher the temperature, the shorter the development times. Brood survival from egg to adult was low, with the maximum survival rate being only 16% at 26° C. Temperature also affected survival of each of the immature stages differently: eggs were negatively affected by high temperatures, while larvae were negatively affected by low temperatures, and the survival of pupae was apparently independent of environmental temperature. At 32° C no eggs survived, while at 18° C less than 2% of the eggs hatched into larva. The data from the present study are essential for developing prediction models about the distribution range of this tramp species based on its physiological needs in relation to temperature.
Genome Biology | 2016
Claire Morandin; Mandy M. Y. Tin; Sílvia Abril; Crisanto Gómez; Luigi Pontieri; Morten Schiøtt; Liselotte Sundström; Kazuki Tsuji; Jes S. Pedersen; Heikki Helanterä; Alexander S. Mikheyev
Background Reproductive division of labor in eusocial insects is a striking example of a shared genetic background giving rise to alternative phenotypes, namely queen and worker castes. Queen and worker phenotypes play major roles in the evolution of eusocial insects. Their behavior, morphology and physiology underpin many ecologically relevant colony-level traits, which evolved in parallel in multiple species. Results Using queen and worker transcriptomic data from 16 ant species we tested the hypothesis that conserved sets of genes are involved in ant reproductive division of labor. We further hypothesized that such sets of genes should also be involved in the parallel evolution of other key traits. We applied weighted gene co-expression network analysis, which clusters co-expressed genes into modules, whose expression levels can be summarized by their ‘eigengenes’. Eigengenes of most modules were correlated with phenotypic differentiation between queens and workers. Furthermore, eigengenes of some modules were correlated with repeated evolution of key phenotypes such as complete worker sterility, the number of queens per colony, and even invasiveness. Finally, connectivity and expression levels of genes within the co-expressed network were strongly associated with the strength of selection. Although caste-associated sets of genes evolve faster than non-caste-associated, we found no evidence for queen- or worker-associated co-expressed genes evolving faster than one another. Conclusions These results identify conserved functionally important genomic units that likely serve as building blocks of phenotypic innovation, and allow the remarkable breadth of parallel evolution seen in ants, and possibly other eusocial insects as well. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0902-7) contains supplementary material, which is available to authorized users.BackgroundReproductive division of labor in eusocial insects is a striking example of a shared genetic background giving rise to alternative phenotypes, namely queen and worker castes. Queen and worker phenotypes play major roles in the evolution of eusocial insects. Their behavior, morphology and physiology underpin many ecologically relevant colony-level traits, which evolved in parallel in multiple species.ResultsUsing queen and worker transcriptomic data from 16 ant species we tested the hypothesis that conserved sets of genes are involved in ant reproductive division of labor. We further hypothesized that such sets of genes should also be involved in the parallel evolution of other key traits. We applied weighted gene co-expression network analysis, which clusters co-expressed genes into modules, whose expression levels can be summarized by their ‘eigengenes’. Eigengenes of most modules were correlated with phenotypic differentiation between queens and workers. Furthermore, eigengenes of some modules were correlated with repeated evolution of key phenotypes such as complete worker sterility, the number of queens per colony, and even invasiveness. Finally, connectivity and expression levels of genes within the co-expressed network were strongly associated with the strength of selection. Although caste-associated sets of genes evolve faster than non-caste-associated, we found no evidence for queen- or worker-associated co-expressed genes evolving faster than one another.ConclusionsThese results identify conserved functionally important genomic units that likely serve as building blocks of phenotypic innovation, and allow the remarkable breadth of parallel evolution seen in ants, and possibly other eusocial insects as well.
Proceedings of the Royal Society B: Biological Sciences | 2015
Heloise Gibb; Nathan J. Sanders; Robert R. Dunn; Simon J. Watson; Manoli Photakis; Sílvia Abril; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Cristina Castracani; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Matthew C. Fitzpatrick; Crisanto Gómez; Donato A. Grasso; Sarah Groc; Brain Heterick; Benjamin D. Hoffmann; Lori Lach; John E. Lattke; Maurice Leponce
Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.
Ecology | 2017
Heloise Gibb; Rob Dunn; Nathan J. Sanders; Blair F. Grossman; Manoli Photakis; Sílvia Abril; Donat Agosti; Alan N. Andersen; Elena Angulo; Inge Armbrecht; Xavier Arnan; Fabricio Beggiato Baccaro; Tom R. Bishop; Raphaël Boulay; Carsten A. Brühl; Cristina Castracani; Xim Cerdá; Israel Del Toro; Thibaut Delsinne; Mireia Diaz; David A. Donoso; Aaron M. Ellison; Martha L. Enríquez; Tom M. Fayle; Donald H. Feener; Brian L. Fisher; Robert N. Fisher; Matthew C. Fitzpatrick; Crisanto Gómez; Nicholas J. Gotelli
What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.
Insectes Sociaux | 2013
Martha L. Enríquez; Sílvia Abril; Mireia Diaz; Crisanto Gómez
The Argentine ant is an invasive species that has been introduced worldwide causing devastating effects on entire ecosystems. Control strategies might be focused on slowing its rate of spread to limit its establishment inside yet non-invaded areas. For this, a better knowledge about nest selection is necessary to identify rapidly and accurately nest locations where to apply control measures. Herein, nest site selection by the Argentine ant, nests’ physical characteristics and their longevity were studied in three invaded cork oak secondary forest. Results showed that this species shifts nest locations seasonally to keep appropriate microclimatic conditions, nesting mainly underneath rocks during cold and rainy months and in tree bases during warmer periods. The terrain features at micro-scale (orientation and slope) were found to influence the distribution of the Argentine ant nests beneath rocks. Additionally, artificial nests used as a control tool were tested, finding that their use may be suitable if they are set in appropriate locations and before the ants start migrating to winter aggregations.
Biological Invasions | 2017
Olivier Blight; Roxana Josens; Cleo Bertelsmeier; Sílvia Abril; Raphaël Boulay; Xim Cerdá
Identifying the factors that promote the success of biological invasions is a key pursuit in ecology. To date, the link between animal personality and invasiveness has rarely been studied. Here, we examined in the laboratory how Argentine ant populations from the species’ native and introduced ranges differed in a suite of behaviours related to species interactions and the use of space. We found correlations among specific behavioural traits that defined an explorative-aggressive syndrome. The Main “European” supercolony (introduced range) more readily explored novel environments, displayed more aggression, detected food resources more quickly, and occupied more space than the Catalonian supercolony (introduced range) and two other Argentine supercolonies (native range). The two native supercolonies also differed in their personalities; one harbouring the less invasive personality, while the other is intermediate between the two introduced supercolonies. Therefore, instead of a binary pattern, Argentine ant supercolonies display a behavioural continuum that is independent on their geographic origin (native/introduced ranges). Our results also suggest that variability in personality traits is correlated to differences in the ecological success of Argentine ant colonies. Differences in group personalities may facilitate the persistence and invasion of animals under novel selective pressures by promoting adaptive behaviours. We stress that the concept of animal personality should be taken into account when elucidating the mechanisms of invasiveness.
Journal of Insect Physiology | 2014
Sílvia Abril; Crisanto Gómez
Polydomy associated with unicoloniality is a common trait of invasive species. In the invasive Argentine ant, colonies are seasonally polydomous. Most follow a seasonal fission-fussion pattern: they disperse in the spring and summer and aggregate in the fall and winter. However, a small proportion of colonies do not migrate; instead, they inhabit permanent nesting sites. These colonies are large and highly polydomous. The aim of this study was to (1) search for differences in the fecundity of queens between mother colonies (large and permanent) and satellite colonies (small and temporal), (2) determine if queens in mother and satellite colonies have different diets to clarify if colony size influences social organization and queen feeding, and (3) examine if colony location relative to the invasion front results in differences in the queens diet. Our results indicate that queens from mother nests are more fertile than queens from satellite nests and that colony location does not affect queen oviposition rate. Ovarian dissections suggest that differences in ovarian morphology are not responsible for the higher queen oviposition rate in mother vs. satellite nests, since there were no differences in the number and length of ovarioles in queens from the two types of colonies. In contrast, the higher δ(15)N values of queens from mother nests imply that greater carnivorous source intake accounts for the higher oviposition rates.
PLOS ONE | 2018
Sílvia Abril; Mireia Diaz; Alain Lenoir; Carolina Ivon Paris; Raphaël Boulay; Crisanto Gómez
In insect societies, chemical communication plays an important role in colony reproduction and individual social status. Many studies have indicated that cuticular hydrocarbons (CHCs) are the main chemical compounds encoding reproductive status. However, these studies have largely focused on queenless or monogynous species whose workers are capable of egg laying and have mainly explored the mechanisms underlying queen-worker or worker-worker reproductive conflicts. Less is known about what occurs in highly polygynous ant species with permanently sterile workers. Here, we used the Argentine ant as a model to examine the role of CHCs in communicating reproductive information in such insect societies. The Argentine ant is unicolonial, highly polygynous, and polydomous. We identified several CHCs whose presence and levels were correlated with queen age, reproductive status, and fertility. Our results also provide new insights into queen executions in the Argentine ant, a distinctive feature displayed by this species in its introduced range. Each spring, just before new sexuals appear, workers eliminate up to 90% of the mated queens in their colonies. We discovered that queens that survived execution had different CHC profiles from queens present before and during execution. More specifically, levels of some CHCs were higher in the survivors, suggesting that workers could eliminate queens based on their chemical profiles. In addition, queen CHC profiles differed based on season and species range (native vs. introduced). Overall, the results of this study provide new evidence that CHCs serve as queen signals and do more than just regulate worker reproduction.
Journal of General Virology | 2018
Lumi Viljakainen; Ida Holmberg; Sílvia Abril; Jaana Jurvansuu
The Argentine ant (Linepithema humile) is a highly invasive pest, yet very little is known about its viruses. We analysed individual RNA-sequencing data from 48 Argentine ant queens to identify and characterisze their viruses. We discovered eight complete RNA virus genomes - all from different virus families - and one putative partial entomopoxvirus genome. Seven of the nine virus sequences were found from ant samples spanning 7 years, suggesting that these viruses may cause long-term infections within the super-colony. Although all nine viruses successfully infect Argentine ants, they have very different characteristics, such as genome organization, prevalence, loads, activation frequencies and rates of evolution. The eight RNA viruses constituted in total 23 different virus combinations which, based on statistical analysis, were non-random, suggesting that virus compatibility is a factor in infections. We also searched for virus sequences from New Zealand and Californian Argentine ant RNA-sequencing data and discovered that many of the viruses are found on different continents, yet some viruses are prevalent only in certain colonies. The viral loads described here most probably present a normal asymptomatic level of infection; nevertheless, detailed knowledge of Argentine ant viruses may enable the design of viral biocontrol methods against this pest.
Collaboration
Dive into the Sílvia Abril's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs