Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Ahualli is active.

Publication


Featured researches published by Silvia Ahualli.


Langmuir | 2011

Adsorption of Anionic and Cationic Surfactants on Anionic Colloids: Supercharging and Destabilization

Silvia Ahualli; Guillermo R. Iglesias; Wolfgang Wachter; M. Dulle; D. Minami; Otto Glatter

We present herein a study on the adsorption of anionic (SDS), cationic (CTAB), and nonionic (C(12)E(5)) surfactants onto anionic silica nanoparticles. The effects of this adsorption are studied by means of the static structure factor, S(q), and the collective diffusion coefficient, D(c), obtained from small-angle X-ray scattering and dynamic light scattering measurements, respectively. The effective charge on the particles was determined also from classical electrophoresis and electroacoustic sonic-amplitude measurements. The surface tension of the sample was also investigated. Of particular note is the adsorption of SDS onto the silica nanoparticles, which leads to supercharging of the interface. This has interesting repercussions for structures obtained by the layer-by-layer (LbL) technique, because emulsions stabilized with supercharged and hydrophobized silica are perfect candidates for use in a multilayer system.


Langmuir | 2009

AC Electrokinetics of Concentrated Suspensions of Soft Particles

Silvia Ahualli; M. Luisa Jiménez; F. Carrique; A.V. Delgado

In this work, we show how the cell model traditionally used for the evaluation of the electrokinetic properties of concentrated suspensions can be modified to include the case of soft particles, that is, particles consisting of a rigid core and a polyelectrolyte membrane. The Navier-Stokes and Poissons equations have been modified to account for the presence of extra friction and a volume-distributed charge in the membrane. In addition to the boundary conditions on the particle and the cell boundary, it is necessary to define conditions on the polymer-electrolyte solution interface. The frequency dependence of the dynamic mobility and electric permittivity of suspensions of soft particles with arbitrary solids concentration is computed. It is shown that the dynamic mobility of these systems is larger than that corresponding to hard particles with the same charge. For the permittivity, the same trends are observed: the R-relaxation amplitude increases upon coating. It is found that friction plays an important role in determining the mobility, while the permittivity is more affected by the concentration of solids. The model also predicts that the charges on the core and in the membrane are very important parameters, although their effects differ on the mobility and the permittivity. While the former depends mainly on the membrane charge, the latter is responsive to both charges at comparable extents.


Journal of Colloid and Interface Science | 2013

Predictions of the maximum energy extracted from salinity exchange inside porous electrodes

M. L. Jiménez; M. M. Fernández; Silvia Ahualli; Guillermo R. Iglesias; A.V. Delgado

Capacitive energy extraction based on double layer expansion (CDLE) is the name of a new method devised for extracting energy from the exchange of fresh and salty water in porous electrodes. It is based on the change of the capacitance of electrical double layers (EDLs) at the electrode/solution interface when the concentration of the bulk electrolyte solution is modified. The use of porous electrodes provides huge amounts of surface area, but given the typically small pore size, the curvature of the interface and EDL overlap should affect the final result. This is the first aspect dealt with in this contribution: we envisage the electrode as a swarm of spherical particles, and from the knowledge of their EDL structure, we evaluate the stored charge, the differential capacitance and the extracted energy per CDLE cycle. In all cases, different pore radii and particle sizes and possible EDL overlap are taken into account. The second aspect is the consideration of finite ion size instead of the usual point-like ion model: given the size of the pores and the relatively high potentials that can be applied to the electrode, excluded volume effects can have a significant role. We find an extremely strong effect: the double layer capacitance is maximum for a certain value of the surface potential. This is a consequence of the limited ionic concentration at the particle-solution interface imposed by the finite size of ions, and leads to the presence of two potential ranges: for low electric potentials the capacitance increases with the ionic strength, while for large potentials we find the opposite trend. The consequences of these facts on the possibility of net energy extraction from porous electrodes, upon changing the solution in contact with them, are evaluated.


Journal of Colloid and Interface Science | 2015

Multi-ionic effects on energy production based on double layer expansion by salinity exchange.

M. M. Fernández; Silvia Ahualli; Guillermo R. Iglesias; F. González-Caballero; A.V. Delgado; M. L. Jiménez

It has been recently shown that the free energy change upon salinity mixing in river mouths can be harvested taking advantage of the fact that the capacitance of charged solid/liquid interfaces (electrical double layers, EDLs) depends strongly on the ionic composition of the liquid medium. This has led to a new generation of techniques called Capmix technologies, one of them (CDLE or capacitive energy extraction based on DL expansion) based precisely on such dependence. Despite the solution composition playing a crucial role on the whole process, most of the research carried out so far has mainly focused on pure sodium chloride solutions. However, the effect of other species usually present in river and seawaters should be considered both theoretically and experimentally in order to succeed in optimizing a future device. In this paper, we analyse solutions of a more realistic composition from two points of view. Firstly, we find both experimentally and theoretically that the presence of ions other than sodium and chloride, even at low concentrations, may lead to a lower energy extraction in the process. Secondly, we experimentally consider the possible effects of other materials usually dispersed in natural water (mineral particles, microbes, shells, pollutants) by checking their accumulation in the carbon films used, after being exposed for a long period to natural sea water during CDLE cycles.


Langmuir | 2010

Stabilization of Lead Sulfide Nanoparticles by Polyamines in Aqueous Solutions. A Structural Study of the Dispersions

Elena Koupanou; Silvia Ahualli; Otto Glatter; A.V. Delgado; Frank Krumeich; Epameinondas Leontidis

Lead sulfide (PbS) nanoparticles have been synthesized in aqueous solutions by a reaction between inorganic lead salts and sodium sulfide and stabilized using the cationic polyelectrolytes branched poly(ethylenimine) (PEI), poly(allylamine hydrochloride) (PAH), and poly(diallyldimethylammonium chloride) (PDDA). The structures of the polyamine-stabilized nanoparticle dispersions were examined in detail using UV-vis spectroscopy, small-angle X-ray scattering (SAXS), static and dynamic electrophoretic mobility measurements, and transmission electron microscopy (TEM). Considerable differences were found between the stabilizing efficiencies of these polyelectrolytes, which cannot be attributed to their charge densities or their persistence lengths. Small monodisperse nanoparticles of PbS with a tight stabilizing shell were consistently found only when PEI was used as a stabilizer even at high pH values, although its charge density is then very low. The excellence of PEI as a stabilizer is mainly due to the extensive branching of the chains and the presence of uncharged secondary and tertiary amine groups, which apparently serve as good anchoring points at the nanoparticle surfaces. None of the polyelectrolytes examined here provide long-term protection of the nanoparticles toward oxidation by air, showing that a need for more complex multipurpose stabilizers exists for aqueous PbS dispersions.


Environmental Science & Technology | 2014

Temperature Effects on Energy Production by Salinity Exchange

Silvia Ahualli; María M. Fernández; Guillermo R. Iglesias; A.V. Delgado; María L. Jiménez

In recent years, the capacitance of the interface between charged electrodes and ionic solutions (the electric double layer) has been investigated as a source of clean energy. Charge is placed on the electrodes either by means of ion-exchange membranes or of an external power source. In the latter method, net energy is produced by simple solution exchange in open circuit, due to the associated decrease in the capacitance of the electric double layer. In this work, we consider the change in capacitance associated with temperature variations: the former decreases when temperature is raised, and, hence, a cycle is possible in which some charge is put on the electrode at a certain potential and returned at a higher one. We demonstrate experimentally that it is thus viable to obtain energy from electric double layers if these are successively contacted with water at different temperatures. In addition, we show theoretically and experimentally that temperature and salinity variations can be conveniently combined to maximize the electrode potential increase. The resulting available energy is also estimated.


Journal of Physical Chemistry C | 2014

Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly

Silvia Ahualli; M. M. Fernández; Guillermo R. Iglesias; María L. Jiménez; Fei Liu; Martijn Wagterveld; A.V. Delgado

In this work, we consider the extent to which the presence of multivalent ions in solution modifies the equilibrium and dynamics of the energy production in a capacitive cell built with ion-exchange membranes in contact with high surface area electrodes. The cell potential in open circuit (OCV) is controlled by the difference between both membrane potentials, simulated as constant volume charge regions. A theoretical model is elaborated for steady state OCV, first in the case of monovalent solutions, as a reference. This is compared to the results in multi-ionic systems, containing divalent cations in concentrations similar to those in real seawater. It is found that the OCV is reduced by about 25% (as compared to the results in pure NaCl solutions) due to the presence of the divalent ions, even in low concentrations. Interestingly, this can be related to the “uphill” transport of such ions against their concentration gradients. On the contrary, their effect on the dynamics of the cell potential is negligible in the case of highly charged membranes. The comparison between model predictions and experimental results shows a very satisfactory agreement, and gives clues for the practical application of these recently introduced energy production methods.


Langmuir | 2012

Electrophoresis and dielectric dispersion of spherical polyelectrolyte brushes.

Silvia Ahualli; Matthias Ballauff; F.J. Arroyo; A.V. Delgado; María L. Jiménez

Spherical polyelectrolyte brushes (SPBs) consist of a rigid core on which polyelectrolyte chains are grafted in such a way that in certain conditions (low ionic strength and high charge of the chains) the polymer chains extend radially toward the liquid medium. Because of the hairy-like structure of the polymer brushes, the typical soft-particle approach used for explaining the behavior of polyelectrolyte-coated particles must be modified, using the assumptions that the density of charged segments in the polymer chains decreases with the squared distance to the rigid core surface and that the same happens to the friction between the brushes and the surrounding fluid. Interest in clarifying the electrokinetics of these systems is not just academic. It has recently been found experimentally (Jiménez et al., Soft Matter 2011, 7, 3758-3762) that the response of concentrated suspensions of spherical polyelectrolyte brushes in the presence of alternating electric fields shows a number of unexpected features. Both dielectric and dynamic electrophoretic mobility spectra (respectively, dependences of the electric permittivity and the AC electrophoretic mobility on the frequency of the applied field) showed very special aspects, with giant values of the mobility and an unusually strong dielectric relaxation in the kHz region. In the present paper we give a full account of the electrodynamics of such systems, based on a cell model for describing the hydrodynamic and electrical interactions between the particles. It is found that the low-frequency dynamic mobility of SPBs is much higher than that of rigid particles of comparable size and charge, making any interpretation based on zeta potential estimations of very limited applicability. The very characteristic feature of SPBs in concentrated suspensions, namely, the enhanced alpha relaxation, can be explained by considering an adequate description of the field-induced perturbations in the counterion and co-ion concentrations, well developed both outside and inside the soft layer in the case of brush-coated particles. It can be also pointed out that the dynamic electrophoretic mobility of SPBs increases with the volume fraction of particles, as a consequence of the large thickness of the brush. Predictions are also shown for the effects of friction coefficient and charge of the polyelectrolyte layer. The results compare well with experimental spectra of the dynamic mobility and electric permittivity of moderately concentrated suspensions of SPBs consisting of a 50 nm polystyrene core with grafted poly(styrene sulfonate) chains some 140 nm in length.


Soft Matter | 2011

Interactions between large colloids and surfactants

Guillermo R. Iglesias; Wolfgang Wachter; Silvia Ahualli; Otto Glatter

The interfacial adsorption of an anionic SDS and a nonionic surfactant C12E5, above the cmc onto submicron-sized, negatively charged silica particles in aqueous solution has been investigated by using electrokinetics, conductometry and static light scattering. It was found that both surfactants are prone to being adsorbed onto the silica/water interface. Addition of C12E5 to the silica dispersion leads to a decrease in mobility. This reduced surface charge causes a decrease in the stability of the silica particles. Surprisingly, the addition of SDS brings about an increase in the negative electrophoretic mobility of the anionic silica particles, leading to a super-charging effect. Subsequent addition of C12E5 gives rise to even higher negative electrophoretic mobilities. This unexpected hyper-charging effect can only be understood as a cooperative effect based on mixed micelles of C12E5 and non-adsorbed SDS. Not so unexpectedly, the sequence of surfactant addition was found to be decisive, as quite different results are obtained when C12E5 is added before SDS.


Soft Matter | 2011

Giant permittivity and dynamic mobility observed for spherical polyelectrolyte brushes

M. L. Jiménez; A.V. Delgado; Silvia Ahualli; M. Hoffmann; A. Witteman; Matthias Ballauff

We present a study of the electrodynamic behavior of concentrated suspensions of spherical polyelectrolyte brushes (SPBs). The dynamic mobility of the SPBs exhibits giant values. Concomitantly, the dielectric spectra of suspensions of these particles display enormous loss peaks in the kHz frequency range. The strong dielectric relaxation is a direct consequence of the inhomogeneity of the counterion distribution inside the polyelectrolyte layer. As can be concluded from the experimentally determined relaxation frequency, the mobility of monovalent counterions is strongly diminished in the brush region. The dynamic behavior of the SPBs at high volume fractions can be explained by the assumption that the polyelectrolyte chains deform when particles approach each other.

Collaboration


Dive into the Silvia Ahualli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge