Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Arboleya is active.

Publication


Featured researches published by Silvia Arboleya.


Mbio | 2014

Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus

Arancha Hevia; Christian Milani; Patricia López; Adriana Cuervo; Silvia Arboleya; Sabrina Duranti; Francesca Turroni; Sonia González; Ana Suárez; Miguel Gueimonde; Marco Ventura; Borja Sánchez; Abelardo Margolles

ABSTRACT Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disease in humans and is characterized by the presence of hyperactive immune cells and aberrant antibody responses to nuclear and cytoplasmic antigens, including characteristic anti–double-stranded DNA antibodies. We performed a cross-sectional study in order to determine if an SLE-associated gut dysbiosis exists in patients without active disease. A group of 20 SLE patients in remission, for which there was strict inclusion and exclusion criteria, was recruited, and we used an optimized Ion Torrent 16S rRNA gene-based analysis protocol to decipher the fecal microbial profiles of these patients and compare them with those of 20 age- and sex-matched healthy control subjects. We found diversity to be comparable based on Shannon’s index. However, we saw a significantly lower Firmicutes/Bacteroidetes ratio in SLE individuals (median ratio, 1.97) than in healthy subjects (median ratio, 4.86; P < 0.002). A lower Firmicutes/Bacteroidetes ratio in SLE individuals was corroborated by quantitative PCR analysis. Notably, a decrease of some Firmicutes families was also detected. This dysbiosis is reflected, based on in silico functional inference, in an overrepresentation of oxidative phosphorylation and glycan utilization pathways in SLE patient microbiota. IMPORTANCE Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders. Growing evidence suggests that the gut microbiota might impact symptoms and progression of some autoimmune diseases. However, how and why this microbial community influences SLE remains to be elucidated. This is the first report describing an SLE-associated intestinal dysbiosis, and it contributes to the understanding of the interplay between the intestinal microbiota and the host in autoimmune disorders.


International Journal of Food Microbiology | 2011

Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk

Silvia Arboleya; Patricia Ruas-Madiedo; Abelardo Margolles; Gonzalo Solís; Seppo Salminen; Clara G. de los Reyes-Gavilán; Miguel Gueimonde

Most of the current commercial probiotic strains have not been selected for specific applications, but rather on the basis of their technological potential for use in diverse applications. Therefore, by selecting them from appropriate sources, depending on the target population, it is likely that better performing strains may be identified. Few strains have been specifically selected for human neonates, where the applications of probiotics may have a great positive impact. Breast-milk constitutes an interesting source of potentially probiotic bifidobacteria for inclusion in infant formulas and foods targeted to both pre-term and full-term infants. In this study six Bifidobacterium strains isolated from breast-milk were phenotypically and genotypically characterised according to international guidelines for probiotics. In addition, different in vitro tests were used to assess the safety and probiotic potential of the strains. Although clinical data would be needed before drawing any conclusion on the probiotic properties of the strains, our results indicate that some of them may have probiotic potential for their inclusion in products targeting infants.


Biological Psychiatry | 2017

Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice

Aurelijus Burokas; Silvia Arboleya; Rachel D. Moloney; Veronica L. Peterson; Kiera Murphy; Gerard Clarke; Catherine Stanton; Timothy G. Dinan; John F. Cryan

BACKGROUND The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. METHODS C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. RESULTS Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. CONCLUSIONS Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology.


Frontiers in Microbiology | 2016

Gut Bifidobacteria Populations in Human Health and Aging

Silvia Arboleya; Claire Watkins; Catherine Stanton; R. Paul Ross

The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Indeed, several studies have linked alterations in the gut microbiota with the development of different diseases. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. The presence of different species of bifidobacteria changes with age, from childhood to old age. Bifidobacterium longum, B. breve, and B. bifidum are generally dominant in infants, whereas B. catenulatum, B. adolescentis and, as well as B. longum are more prevalent in adults. Increasingly, evidence is accumulating which shows beneficial effects of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria have been associated with the production of a number of potentially health promoting metabolites including short chain fatty acids, conjugated linoleic acid and bacteriocins. The aim of this mini-review is to describe the bifidobacteria compositional changes associated with different stages in life, highlighting their beneficial role, as well as their presence or absence in many disease states.


Frontiers in Genetics | 2014

The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations

Nuria Salazar; Silvia Arboleya; Lorena Valdés; Catherine Stanton; Paul Ross; Lorena Ruiz; Miguel Gueimonde; Clara G. de los Reyes-Gavilán

The intestinal microbiome is defined as the assembly of genomes from microorganisms inhabiting the gut. This microbial ecosystem regulates important functions of the host and its correct composition and functionality is essential for a “healthy status.” Metagenomic studies have highlighted variations of the intestinal microbiota as a function of age and diet. Colonization of the infant gut starts at birth and is influenced by feeding habits (formula vs. breast-feeding), birth mode and antibiotic exposure. The intestinal microbiota of full-term vaginally delivered breast-fed infants is considered the gold-standard, representing the reference for studies of alterations in other pediatric populations. At 2–3 years of age, the intestinal microbiota reaches a composition similar to adults, remaining without noticeable variations until senescence, when microbial instability and changes reappear. Here we summarize the current knowledge on intestinal microbiota alterations at extreme stages of life and tools for designing differentiated nutritional strategies by the use of probiotics, prebiotics and specific nutrients in order to restore a balanced microbiota and to improve immune and nutritional status.


Anaerobe | 2012

Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota

Silvia Arboleya; Li Ang; Abelardo Margolles; Li Yiyuan; Zhang Dongya; Xiao Liang; Gonzalo Solís; Nuria Fernández; Clara G. de los Reyes-Gavilán; Miguel Gueimonde

Metagenomic studies on the gut microbiota of preterm infants are scarce. We characterized the microbiota of 10 days-old neonates by deep 16S rRNA gene metagenomic analysis and compare the results with those obtained by qPCR. Both techniques lead to similar conclusions, allowing differentiating between preterm and full-term infants.


Gut microbes | 2012

Facultative to strict anaerobes ratio in the preterm infant microbiota: A target for intervention?

Silvia Arboleya; Gonzalo Solís; Nuria Fernández; Clara G. de los Reyes-Gavilán; Miguel Gueimonde

During recent years there has been an increasing interest on the development of strategies for modulating the process of microbiota establishment in preterm infants. For successfully developing of such strategies, a detailed knowledge of the microbiota establishment process in these infants is needed. In a previous study we evidenced clear alterations in the process of microbiota establishment in preterm newborns when compared with a control group of full-term breast-fed infants. Here we have analyzed these data more in depth, corroborating a reduced proportion of strict anaerobes with respect to facultatives in the fecal microbiota of preterm infants. The potential benefits, as well as the side effects, of strategies aimed at counterbalancing this alteration in the facultative to strict anaerobes ratio are discussed in this addendum.


International Journal of Molecular Sciences | 2016

Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study

Silvia Arboleya; Borja Sánchez; Gonzalo Solís; Nuria Fernández; Marta Suárez; Ana María Hernández-Barranco; Christian Milani; Abelardo Margolles; Clara G. de los Reyes-Gavilán; Marco Ventura; Miguel Gueimonde

Background: The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. Methods: We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Results: Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. Conclusion: A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.


Applied and Environmental Microbiology | 2013

Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria

David Rios-Covian; Silvia Arboleya; Ana María Hernández-Barranco; Jorge R. Álvarez-Buylla; Patricia Ruas-Madiedo; Miguel Gueimonde; Clara G. de los Reyes-Gavilán

ABSTRACT Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.


Anaerobe | 2013

Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in in vitro fecal batch cultures from preterm neonates.

Silvia Arboleya; Nuria Salazar; Gonzalo Solís; Nuria Fernández; Ana María Hernández-Barranco; Isabel Cuesta; Miguel Gueimonde; Clara G. de los Reyes-Gavilán

Microbial colonization of the infant gut is essential for the development of the intestine and the immune system. The intestinal microbiota of full-term breast-fed infants is considered as the health standard for newborns. A culture medium containing formula milk was designed, which allowed a balanced growth of intestinal microorganisms and was used to perform fecal batch cultures from preterm babies. Sixteen Bifidobacterium strains and fructooligosaccharides (FOS) were tested for their ability to modulate in vitro the intestinal microbiota. The production of short chain fatty acids (SCFA) was measured by Gas Chromatography and the levels of some anaerobe (Bifidobacterium and Bacteroides groups) and facultative anaerobes (Enterobacteriaceae, Enterococcaceae, Weissella group, and Klebsiella pneumoniae) were determined by quantitative PCR. Results were referred to a fecal negative control culture without microorganisms or FOS added. Strains that in fecal cultures counteracted better the aberrancies previously found in feces of preterm babies, as compared with full-term breast-fed infants, were selected. The three Bifidobacterium bifidum strains tested in this work promoted the most suitable shifts in SCFA and in the ratio of variables facultative anaerobes to anaerobes. Two Bifidobacterium breve strains complied with the requirement for facultative anaerobes and anaerobes and one of them also promoted a suitable shift of SCFA. Bifidobacteria behaved similarly as FOS regarding the microbial profiles in fecal cultures but the production of lactic and acetic acid was much lower. B. breve and B. bifidum strains selected represent promising candidates for their assessment in more complex in vitro and in vivo models.

Collaboration


Dive into the Silvia Arboleya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel Gueimonde

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gonzalo Solís

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Nuria Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Nuria Salazar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Suárez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Miguel Gueimonde Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Abelardo Margolles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge