Sílvia Barrabés
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sílvia Barrabés.
Disease Markers | 2008
Rosa Peracaula; Sílvia Barrabés; Ariadna Sarrats; Pauline M. Rudd; Rafael de Llorens
The lack of specific and sensitive tumour markers for early detection of cancer is driving a search for new approaches that could identify biomarkers. Markers are needed to alert clinicians at the early stages of tumourogenesis, before the cancer has metastasized, when the therapeutic drugs are more effective. Most tumour markers currently used in clinics are serum glycoproteins, frequently highly glycosylated mucins. Typically, the disease marker is the protein and not the glycan moiety of the corresponding glycoprotein or mucin. The increasing knowledge of the role of glycans in cancer suggests that further studies may assist both in determining their role in every step of tumour progression, and in the design of new therapeutic and diagnosic approaches. Detection of the altered glycans in serum tumour glycoproteins could be a way to achieve specificity in tumour detection. In this review, we focus on the glycan changes of two serum glycoproteins, prostate specific antigen - currently used as a tumour marker of prostate cancer - and human pancreatic ribonuclease in pancreatic adenocarcinoma. The detection of glycan changes, associated with subsets of glycoforms in serum glycoproteins that are specific to the tumour situation, could be the basis for developing more specific biomarkers.
Electrophoresis | 2010
Sílvia Barrabés; Ariadna Sarrats; Esther Fort; Rafael de Llorens; Pauline M. Rudd; Rosa Peracaula
2‐DE is broadly used for quantitative analysis of differential protein expression in complex mixtures such as serum samples or cell lysates. PTMs directly influence the 2‐DE pattern, and knowledge of the rules of protein separation is required in order to understand the protein distribution in a 2‐DE gel. Glycosylation is the most common PTM and can modify both the molecular weight and the pI of a protein. In particular, the effect of charged monosaccharides (mainly sialic acids, SAs) on the 2‐DE pattern of a protein is of major interest since changes in sialylation are regularly observed in comparative studies. Little is known about the pI shift of a glycoprotein induced by the presence of SAs, or whether this shift is the same for all glycoproteins. To address this issue, this study examined the influence of SA on the 2‐DE pattern of three serum glycoproteins (haptoglobin, α1‐antitrypsin and ribonuclease 1), which N‐glycan chains had been previously characterised, and reviewed existing bibliographic data. The SA content of the different glycoforms of a glycoprotein showed a negative linear correlation with the pI, although the slope varied among the studied glycoproteins. We also described a positive correlation between the protein pI and the pI decrease per SA molecule.
Theranostics | 2016
Esther Llop; Montserrat Ferrer-Batallé; Sílvia Barrabés; Pedro Enrique Guerrero; Manel Ramírez; Radka Saldova; Pauline M. Rudd; Rosa N. Aleixandre; Josep Comet; Rafael de Llorens; Rosa Peracaula
New markers based on PSA isoforms have recently been developed to improve prostate cancer (PCa) diagnosis. However, novel approaches are still required to differentiate aggressive from non-aggressive PCa to improve decision making for patients. PSA glycoforms have been shown to be differentially expressed in PCa. In particular, changes in the extent of core fucosylation and sialylation of PSA N-glycans in PCa patients compared to healthy controls or BPH patients have been reported. The objective of this study was to determine these specific glycan structures in serum PSA to analyze their potential value as markers for discriminating between BPH and PCa of different aggressiveness. In the present work, we have established two methodologies to analyze the core fucosylation and the sialic acid linkage of PSA N-glycans in serum samples from BPH (29) and PCa (44) patients with different degrees of aggressiveness. We detected a significant decrease in the core fucose and an increase in the α2,3-sialic acid percentage of PSA in high-risk PCa that differentiated BPH and low-risk PCa from high-risk PCa patients. In particular, a cut-off value of 0.86 of the PSA core fucose ratio, could distinguish high-risk PCa patients from BPH with 90% sensitivity and 95% specificity, with an AUC of 0.94. In the case of the α2,3-sialic acid percentage of PSA, the cut-off value of 30% discriminated between high-risk PCa and the group of BPH, low-, and intermediate-risk PCa with a sensitivity and specificity of 85.7% and 95.5%, respectively, with an AUC of 0.97. The latter marker exhibited high performance in differentiating between aggressive and non-aggressive PCa and has the potential for translational application in the clinic.
Journal of Proteomics | 2016
Meritxell Balmaña; Estela Giménez; Angel de la Puerta; Esther Llop; Joan Figueras; Esther Fort; Victoria Sanz-Nebot; Carme de Bolós; Andreas Rizzi; Sílvia Barrabés; Mercedes de Frutos; Rosa Peracaula
Pancreatic cancer (PDAC) lacks reliable diagnostic biomarkers and the search for new biomarkers represents an important challenge. Previous results looking at a small cohort of patients showed an increase in α-1-acid glycoprotein (AGP) fucosylation in advanced PDAC using N-glycan sequencing. Here, we have analysed AGP glycoforms in a larger cohort using several analytical techniques including mass spectrometry (MS), capillary zone electrophoresis (CZE) and enzyme-linked lectin assays (ELLAs) for determining AGP glycoforms which could be PDAC associated. AGP from 31 serum samples, including healthy controls (HC), chronic pancreatitis (ChrP) and PDAC patients, was purified by immunoaffinity chromatography. Stable isotope labelling of AGP released N-glycans and their analysis by zwitterionic hydrophilic interaction capillary liquid chromatography electrospray MS (μZIC-HILIC-ESI-MS) showed an increase in AGP fucosylated glycoforms in PDAC compared to ChrP and HC. By CZE-UV analysis, relative concentrations of some of the AGP isoforms were found significantly different compared to those in PDAC and HC. Finally, ELLAs using Aleuria aurantia lectin displayed a significant increase in AGP fucosylation, before and after AGP neuraminidase treatment, in advanced PDAC compared to ChrP and HC, respectively. Altogether, these results indicate that α1-3 fucosylated glycoforms of AGP are increased in PDAC and could be potentially regarded as a PDAC biomarker.
World Journal of Gastroenterology | 2018
Esther Llop; Pedro Enrique Guerrero; Adrià Duran; Sílvia Barrabés; Anna Massaguer; María José Ferri; Maite Albiol-Quer; Rafael de Llorens; Rosa Peracaula
Pancreatic cancer (PaC) shows a clear tendency to increase in the next years and therefore represents an important health and social challenge. Currently, there is an important need to find biomarkers for PaC early detection because the existing ones are not useful for that purpose. Recent studies have indicated that there is a large window of time for PaC early detection, which opens the possibility to find early biomarkers that could greatly improve the dismal prognosis of this tumor. The present manuscript reviews the state of the art of the existing PaC biomarkers. It focuses on the anomalous glycosylation process and its role in PaC. Glycan structures of glycoconjugates such as glycoproteins are modified in tumors and these modifications can be detected in biological fluids of the cancer patients. Several studies have found serum glycoproteins with altered glycan chains in PaC patients, but they have not shown enough specificity for PaC. To find more specific cancer glycoproteins we propose to analyze the glycan moieties of a battery of glycoproteins that have been reported to increase in PaC tissues and that can also be found in serum. The combination of these new candidate glycoproteins with their aberrant glycosylation together with the existing biomarkers could result in a panel, which would expect to give better results as a new tool for early diagnosis of PaC and to monitor the disease.
International Journal of Biological Macromolecules | 2018
Meritxell Balmaña; Adrià Duran; Catarina Gomes; Esther Llop; Raquel López-Martos; M. Rosa Ortiz; Sílvia Barrabés; Celso A. Reis; Rosa Peracaula
Pancreatic adenocarcinoma (PDAC) lacks efficient biomarkers. Mucins are glycoproteins that can carry aberrant glycosylation in cancer. Our objective was to identify cancer-related glycan epitopes on MUC1 and MUC5AC mucins in PDAC as potential biomarkers. We have analysed the tumour-associated carbohydrate antigens sialyl-Lewis x (SLex) and sialyl-Tn (STn) on MUC1 and MUC5AC in PDAC tissues. The selected cohort for this study consisted of twenty-one PDAC tissues positive for SLex antigen and three normal pancreas specimens as controls. STn expression was shown in 76% of the PDAC tissues. MUC1 and MUC5AC were detected in 90% of PDAC tissues. We performed in situ proximity ligation assay combining antibodies against mucins and glycan epitopes to identify specific mucin glycoforms. MUC1-SLex and MUC5AC-SLex were found in 68% and 84% respectively, of the mucin expressing PDAC tissues, while STn hardly colocalized with any of the evaluated mucins. Further analysis by Western blot of MUC5AC and SLex in eight PDAC tissue lysates showed that six out of eight cases were positive for both markers. Moreover, immunoprecipitation of MUC5AC from positive PDAC tissues and subsequent SLex immunodetection confirmed the presence of SLex on MUC5AC. Altogether, MUC5AC-SLex glycoform is present in PDAC and can be regarded as potential biomarker.
Journal of Pharmaceutical and Biomedical Analysis | 2017
Noemi Farina-Gomez; Sílvia Barrabés; Jorge E. Gomez-Lopez; Mónica González; Angel de la Puerta; Diana Navarro-Calderon; Edurado Albers-Acosta; Carlos Olivier; Jose Carlos Diez-Masa; Rosa Peracaula; Mercedes de Frutos
HIGHLIGHTSA method to prepare serum samples to make CE analysis of PSA possible is shown.The effect of sample preparation on PSA is followed by SDS‐PAGE, CD, CZE and 2‐DE.Ethanolamine and chromatographic immunopurification do not markedly alter PSA.CZE profiles of PSA vary in cancer‐patient serum and healthy‐person seminal plasma. ABSTRACT Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Currently prostate specific antigen (PSA) serum concentration is the most used prostate cancer marker, but it only shows limited specificity. Because PSA glycosylation is altered by prostate cancer, detecting glycosylation changes could increase PSA specificity as a prostate cancer marker. Changes in PSA glycosylation can modify its electrophoretic‐ behavior and techniques such as capillary zone electrophoresis (CZE) and two‐dimensional electrophoresis (2‐DE) could be applied to detect changes in PSA glycosylation. Most serum PSA is complexed with alpha‐1 antichymotrypsin (ACT). To have access to most of the PSA, the complexed PSA has to be released as free PSA (fPSA); in addition, this total fPSA must be purified from the serum matrix so that it can be analyzed using CZE. In this work a methodology for isolating PSA from serum for its CZE analysis was established. By using PSA standard, the effect of this methodology, which combines conditions for dissociating complexed PSA and immunoaffinity chromatographic purification, was studied. It was seen that this highly repeatable sample treatment did not noticeably alter the circular dichroism (CD) spectrum or the CZE pattern of PSA standard. Therefore, as a proof‐of‐concept, the developed sample treatment was applied to serum from a cancer patient with a high PSA content. The following observations can be made from these experiments: first of all, the 2‐DE pattern of serum PSA remained unchanged after sample treatment; second, as hypothesized, the established sample preparation methodology made it possible to obtain the CZE pattern of PSA from serum; and third, the CZE pattern of serum PSA and of PSA standard from seminal plasma of healthy individuals, both submitted to the sample treatment method, showed some differences regarding the proportion of CZE peaks of the glycoprotein. These differences could be related to possible changes in the linkages of peptide backbone, in glycosylation or in other post‐translational modifications between samples from both origins.
Electrophoresis | 2017
Sílvia Barrabés; Noemi Farina-Gomez; Esther Llop; Angel de la Puerta; Jose Carlos Diez-Masa; Antoinette S. Perry; Rafael de Llorens; Mercedes de Frutos; Rosa Peracaula
Serum levels of Prostate‐Specific Antigen (PSA) are not fully specific for prostate cancer (PCa) diagnosis and several efforts are focused on searching to improve PCa markers through the study of PSA subforms that could be cancer associated. We have previously reported by 2DE a decrease in the sialic acid content of PSA from PCa compared to benign prostatic hyperplasia patients based on the different proportion of the PSA spots. However, faster and more quantitative techniques, easier to automate than 2DE, are desirable. In this study, we examined the potential of CE for resolving PSA subforms in different samples and compared the results with those obtained by 2DE. We first fractionated by OFFGEL the subforms of PSA from seminal plasma according to their pIs and analyzed each separated fraction by 2DE and CE. We also analyzed PSA and high pI PSA, both from seminal plasma, and PSA from urine of a PCa patient. These samples with different PSA spots proportions by 2DE, due to different posttranslational modifications, also presented different CE profiles. This study shows that CE is a useful and complementary technique to 2DE for analyzing samples with different PSA subforms, which is of high clinical interest.
Clinica Chimica Acta | 2017
Sílvia Barrabés; Esther Llop; Montserrat Ferrer-Batallé; Manel Ramírez; Rosa N. Aleixandre; Antoinette S. Perry; Rafael de Llorens; Rosa Peracaula
The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA.
Glycobiology | 2006
Glòria Tabarés; Catherine M. Radcliffe; Sílvia Barrabés; Manel Ramírez; R. Núria Aleixandre; Wolfgang Hoesel; Raymond A. Dwek; Pauline M. Rudd; Rosa Peracaula; Rafael de Llorens