Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Casarotto is active.

Publication


Featured researches published by Silvia Casarotto.


Science Translational Medicine | 2013

A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior

Adenauer G. Casali; Olivia Gosseries; Mario Rosanova; Mélanie Boly; Simone Sarasso; Karina Rabello Casali; Silvia Casarotto; Marie Aurélie Bruno; Steven Laureys; Giulio Tononi; Marcello Massimini

A theory-derived index of consciousness, which quantifies the complexity of the brain’s response to a stimulus, measures the level of consciousness in awake, sleeping, anesthetized, and brain-damaged subjects. Quantifying the Unquantifiable Manipulation of consciousness is an everyday medical trick—think anesthesia—but physicians have only the crudest of tools to detect when a person is not aware. The usual question or physical stimulus does not always provide reliable reactions, and a more precise index is needed to avoid, for example, the conclusion that people who have locked-in syndrome (in which they are aware but cannot respond) are unconscious. Here, Casali et al. have extended their previous work on electrical correlates of consciousness to define an electroencephalographic-derived index of human consciousness [the perturbational complexity index (PCI)] that reflects the information content of the brain’s response to a magnetic stimulus. The PCI could allow tracking of consciousness in individual patients. The authors used data already collected from previous experiments, in which they had stimulated people’s brains with transcranial magnetic stimulation. By calculating the likely brain regional sources of the signals and then comparing the unique information in each, the authors derived PCI values. The values ranged from 0.44 to 0.67 in 32 awake healthy people, but fell to 0.18 to 0.28 during nonrapid eye movement (NREM) sleep. Then, to see whether a completely different way of inducing unconsciousness had the same effect on PCI, the authors assessed data from patients given various amounts of the anesthetics midazolam, xenon, and propofol. These agents too caused low “unconscious” values for the PCI: midazolam deep sedation, 0.23 to 0.31; propofol, 0.13 to 0.30; and xenon, 0.12 to 0.31. However, what about patients who suffer brain damage and who exhibit various levels of consciousness by conventional assessment methods? In these people, consciousness varies widely, as does the underlying damage from stroke or trauma. Here, too, the authors found promising results in those who had emerged from coma but were in a vegetative state or minimally conscious state, or exhibited locked-in syndrome. The PCI values from these patients clearly reflected the state of their consciousness, with the six patients in a vegetative state clearly unconscious (0.19 to 0.31), the two with locked-in syndrome clearly aware (0.51 to 0.62), and those in a minimally conscious state showing intermediate values (0.32 to 0.49). The validity of PCI for clinical application will need to be assessed in prospective trials, but it has the advantage of being derived from a simple noninvasive measurement. The new index reported by Casali et al. appears to be a robust measure that distinguishes conscious from unconscious states well enough to be used on an individual basis, a prerequisite for deployment in the clinic. One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject’s ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain’s ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside.


Brain | 2012

Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients.

Mario Rosanova; Olivia Gosseries; Silvia Casarotto; Mélanie Boly; Adenauer G. Casali; Marie Aurélie Bruno; Maurizio Mariotti; Pierre Boveroux; Giulio Tononi; Steven Laureys; Marcello Massimini

Patients surviving severe brain injury may regain consciousness without recovering their ability to understand, move and communicate. Recently, electrophysiological and neuroimaging approaches, employing simple sensory stimulations or verbal commands, have proven useful in detecting higher order processing and, in some cases, in establishing some degree of communication in brain-injured subjects with severe impairment of motor function. To complement these approaches, it would be useful to develop methods to detect recovery of consciousness in ways that do not depend on the integrity of sensory pathways or on the subjects ability to comprehend or carry out instructions. As suggested by theoretical and experimental work, a key requirement for consciousness is that multiple, specialized cortical areas can engage in rapid causal interactions (effective connectivity). Here, we employ transcranial magnetic stimulation together with high-density electroencephalography to evaluate effective connectivity at the bedside of severely brain injured, non-communicating subjects. In patients in a vegetative state, who were open-eyed, behaviourally awake but unresponsive, transcranial magnetic stimulation triggered a simple, local response indicating a breakdown of effective connectivity, similar to the one previously observed in unconscious sleeping or anaesthetized subjects. In contrast, in minimally conscious patients, who showed fluctuating signs of non-reflexive behaviour, transcranial magnetic stimulation invariably triggered complex activations that sequentially involved distant cortical areas ipsi- and contralateral to the site of stimulation, similar to activations we recorded in locked-in, conscious patients. Longitudinal measurements performed in patients who gradually recovered consciousness revealed that this clear-cut change in effective connectivity could occur at an early stage, before reliable communication was established with the subject and before the spontaneous electroencephalogram showed significant modifications. Measurements of effective connectivity by means of transcranial magnetic stimulation combined with electroencephalography can be performed at the bedside while by-passing subcortical afferent and efferent pathways, and without requiring active participation of subjects or language comprehension; hence, they offer an effective way to detect and track recovery of consciousness in brain-injured patients who are unable to exchange information with the external environment.


Cerebral Cortex | 2013

Human Cortical Excitability Increases with Time Awake

Reto Huber; Hanna Mäki; Mario Rosanova; Silvia Casarotto; Paola Canali; Adenauer G. Casali; Giulio Tononi; Marcello Massimini

Prolonged wakefulness is associated not only with obvious changes in the way we feel and perform but also with well-known clinical effects, such as increased susceptibility to seizures, to hallucinations, and relief of depressive symptoms. These clinical effects suggest that prolonged wakefulness may be associated with significant changes in the state of cortical circuits. While recent animal experiments have reported a progressive increase of cortical excitability with time awake, no conclusive evidence could be gathered in humans. In this study, we combine transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to monitor cortical excitability in healthy individuals as a function of time awake. We observed that the excitability of the human frontal cortex, measured as the immediate (0-20 ms) EEG reaction to TMS, progressively increases with time awake, from morning to evening and after one night of total sleep deprivation, and that it decreases after recovery sleep. By continuously monitoring vigilance, we also found that this modulation in cortical responsiveness is tonic and not attributable to transient fluctuations of the level of arousal. The present results provide noninvasive electrophysiological evidence that wakefulness is associated with a steady increase in the excitability of human cortical circuits that is rebalanced during sleep.


Cognitive Neuroscience | 2010

Cortical reactivity and effective connectivity during REM sleep in humans.

Marcello Massimini; Fabio Ferrarelli; Michael Murphy; Reto Huber; Brady A. Riedner; Silvia Casarotto; Giulio Tononi

We recorded the electroencephalographic (EEG) responses evoked by transcranial magnetic stimulation (TMS) during the first rapid eye movement (REM) sleep episode of the night and compared them with the responses obtained during previous wakefulness and non-REM (NREM) sleep. Confirming previous findings, upon falling into NREM sleep, cortical activations became more local and stereotypical, indicating a significant impairment of the intracortical dialogue. During REM sleep, a state in which subjects regain consciousness but are almost paralyzed, TMS triggered more widespread and differentiated patterns of cortical activation that were similar to the ones observed in wakefulness. Similarly, TMS/high-density EEG may be used to probe the internal dialogue of the thalamocortical system in brain-injured patients that are unable to move and communicate.


PLOS ONE | 2010

EEG Responses to TMS Are Sensitive to Changes in the Perturbation Parameters and Repeatable over Time

Silvia Casarotto; Leonor J. Romero Lauro; Valentina Bellina; Adenauer G. Casali; Mario Rosanova; Andrea Pigorini; Stefano Defendi; Maurizio Mariotti; Marcello Massimini

Background High-density electroencephalography (hd-EEG) combined with transcranial magnetic stimulation (TMS) provides a direct and non-invasive measure of cortical excitability and connectivity in humans and may be employed to track over time pathological alterations, plastic changes and therapy-induced modifications in cortical circuits. However, the diagnostic/monitoring applications of this technique would be limited to the extent that TMS-evoked potentials are either stereotypical (non-sensitive) or random (non-repeatable) responses. Here, we used controlled changes in the stimulation parameters (site, intensity, and angle of stimulation) and repeated longitudinal measurements (same day and one week apart) to evaluate the sensitivity and repeatability of TMS/hd-EEG potentials. Methodology/Principal Findings In 10 volunteers, we performed 92 single-subject comparisons to evaluate the similarities/differences between pairs of TMS-evoked potentials recorded in the same/different stimulation conditions. For each pairwise comparison, we used non-parametric statistics to calculate a Divergence Index (DI), i.e., the percentage of samples that differed significantly, considering all scalp locations and the entire post-stimulus period. A receiver operating characteristic analysis showed that it was possible to find an optimal DI threshold of 1.67%, yielding 96.7% overall accuracy of TMS/hd-EEG in detecting whether a change in the perturbation parameters occurred or not. Conclusions/Significance These results demonstrate that the EEG responses to TMS essentially reflect deterministic properties of the stimulated neuronal circuits as opposed to stereotypical responses or uncontrolled variability. To the extent that TMS-evoked potentials are sensitive to changes and repeatable over time, they may be employed to detect longitudinal changes in the state of cortical circuits.


NeuroImage | 2010

General indices to characterize the electrical response of the cerebral cortex to TMS

Adenauer G. Casali; Silvia Casarotto; Mario Rosanova; Maurizio Mariotti; Marcello Massimini

Transcranial magnetic stimulation (TMS) combined with simultaneous high-density electroencephalography (hd-EEG) represents a straightforward way to gauge cortical excitability and connectivity in humans. However, the analysis, classification and interpretation of TMS-evoked potentials are hampered by scarce a priori knowledge about the physiological effect of TMS and by lack of an established data analysis framework. Here, we implemented a standardized, data-driven procedure to characterize the electrical response of the cerebral cortex to TMS by means of three synthetic indices: significant current density (SCD), phase-locking (PL) and significant current scattering (SCS). SCD sums up the amplitude of all significant currents induced by TMS, PL reflects the ability of TMS to reset the phase of ongoing cortical oscillations, while SCS measures the average distance of significantly activated sources from the site of stimulation. These indices are aimed at capturing different aspects of brain responsiveness, ranging from global cortical excitability towards global cortical connectivity. We analyzed the EEG responses to TMS of Brodmanns area 19 at increasing intensities in five healthy subjects. The spatial distribution and time course of SCD, PL and SCS revealed a reproducible profile of excitability and connectivity, characterized by a local activation threshold around a TMS-induced electric field of 50 V/m and by a selective propagation of TMS-evoked activation from occipital to ipsilateral frontal areas that reached a maximum at 70-100 ms. These general indices may be used to characterize the effects of TMS on any cortical area and to quantitatively evaluate cortical excitability and connectivity in physiological and pathological conditions.


Annals of Neurology | 2016

Stratification of unresponsive patients by an independently validated index of brain complexity

Silvia Casarotto; Angela Comanducci; Mario Rosanova; Simone Sarasso; Matteo Fecchio; Martino Napolitani; Andrea Pigorini; Adenauer G. Casali; Pietro D. Trimarchi; Mélanie Boly; Olivia Gosseries; Olivier Bodart; Francesco Curto; Cristina Landi; Maurizio Mariotti; Guya Devalle; Steven Laureys; Giulio Tononi; Marcello Massimini

Validating objective, brain‐based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness—the Perturbational Complexity Index (PCI)—in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs).


Clinical Neurophysiology | 2004

Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children

Silvia Casarotto; Anna M. Bianchi; Sergio Cerutti; Giuseppe A. Chiarenza

OBJECTIVE The aim of this study was to reduce ocular artefacts in single trial event-related potentials (ERPs) recorded in normal and in dyslexic children. METHODS ERPs were recorded during passive and active reading of centrally presented alphabetic letters and non alphabetic symbols. EEG was recorded from 10 EEG locations using the 10-20 system. Diagonal EOG from the right eye was also recorded. Principal component analysis (PCA) was applied in order to reduce ocular artefacts: the first or the second principal component (PC) was subtracted when the correlation coefficient between the component and EOG was greater or equal to 0.9 or 0.95, respectively. Performance of the method was tested on simulated and real data, on both single and averaged trials, varying EOG amplitude and artefact transmission characteristics. RESULTS Applying the method to real recordings from normal and dyslexic children, we obtained a significant increase in the number of useful trials. In normal children we retrieved 41.0% of the rejected trials in passive and 39.1% in active reading. In dyslexic children 36.7 and 32.2% of the rejected trials in passive and active reading could be included in the respective averages. CONCLUSIONS The method allows an increase in the number of trials suitable for averaging, a great improvement in ERP quality and a reduction in the recording time.


NeuroImage | 2015

Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

Andrea Pigorini; Simone Sarasso; Paola Proserpio; Caroline Szymanski; Gabriele Arnulfo; Silvia Casarotto; Matteo Fecchio; Mario Rosanova; Maurizio Mariotti; Giorgio Lo Russo; J. Matias Palva; Lino Nobili; Marcello Massimini

During non-rapid eye movement (NREM) sleep (stage N3), when consciousness fades, cortico-cortical interactions are impaired while neurons are still active and reactive. Why is this? We compared cortico-cortical evoked-potentials recorded during wakefulness and NREM by means of time-frequency analysis and phase-locking measures in 8 epileptic patients undergoing intra-cerebral stimulations/recordings for clinical evaluation. We observed that, while during wakefulness electrical stimulation triggers a chain of deterministic phase-locked activations in its cortical targets, during NREM the same input induces a slow wave associated with an OFF-period (suppression of power>20Hz), possibly reflecting a neuronal down-state. Crucially, after the OFF-period, cortical activity resumes to wakefulness-like levels, but the deterministic effects of the initial input are lost, as indicated by a sharp drop of phase-locked activity. These findings suggest that the intrinsic tendency of cortical neurons to fall into a down-state after a transient activation (i.e. bistability) prevents the emergence of stable patterns of causal interactions among cortical areas during NREM. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions in which thalamo-cortical information integration and consciousness are impaired in spite of preserved neuronal activity.


Clinical Eeg and Neuroscience | 2014

Quantifying Cortical EEG Responses to TMS in (Un)consciousness

Simone Sarasso; Mario Rosanova; Adenauer G. Casali; Silvia Casarotto; Matteo Fecchio; Mélanie Boly; Olivia Gosseries; Giulio Tononi; Steven Laureys; Marcello Massimini

We normally assess another individual’s level of consciousness based on her or his ability to interact with the surrounding environment and communicate. Usually, if we observe purposeful behavior, appropriate responses to sensory inputs, and, above all, appropriate answers to questions, we can be reasonably sure that the person is conscious. However, we know that consciousness can be entirely within the brain, even in the absence of any interaction with the external world; this happens almost every night, while we dream. Yet, to this day, we lack an objective, dependable measure of the level of consciousness that is independent of processing sensory inputs and producing appropriate motor outputs. Theoretically, consciousness is thought to require the joint presence of functional integration and functional differentiation, otherwise defined as brain complexity. Here we review a series of recent studies in which Transcranial Magnetic Stimulation combined with electroencephalography (TMS/EEG) has been employed to quantify brain complexity in wakefulness and during physiological (sleep), pharmacological (anesthesia) and pathological (brain injury) loss of consciousness. These studies invariably show that the complexity of the cortical response to TMS collapses when consciousness is lost during deep sleep, anesthesia and vegetative state following severe brain injury, while it recovers when consciousness resurges in wakefulness, during dreaming, in the minimally conscious state or locked-in syndrome. The present paper will also focus on how this approach may contribute to unveiling the pathophysiology of disorders of consciousness affecting brain-injured patients. Finally, we will underline some crucial methodological aspects concerning TMS/EEG measurements of brain complexity.

Collaboration


Dive into the Silvia Casarotto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adenauer G. Casali

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mélanie Boly

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge