Silvia Cocito
ENEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Cocito.
Chemistry and Ecology | 2010
R. Cattaneo Vietti; Giancarlo Albertelli; S. Aliani; S. Bava; Giorgio Bavestrello; L. Benedetti Cecchi; Carlo Nike Bianchi; E. Bozzo; Marco Capello; Michela Castellano; Carlo Cerrano; Mariachiara Chiantore; N. Corradi; Silvia Cocito; Laura Cutroneo; Giovanni Diviacco; Mauro Fabiano; M. Faimali; Marco Ferrari; G. P. Gasparini; Marina Locritani; L. Mangialajo; Valentina Marin; Mariapaola Moreno; Carla Morri; L. Orsi Relini; L. Pane; Chiara Paoli; Mario Petrillo; Paolo Povero
The Ligurian Sea is a deep basin in the northernmost sector of the western Mediterranean which shows peculiar hydrodynamic and meteo-oceanographic features. The coasts of the Ligurian Sea are among the most urbanised and industrialised along the Italian coastline: the main causes of disturbance being littoral urban development and harbour activities, the building of littoral rail- and highways, and the presence of several polluted discharges. This review, by evaluating the huge scientific output published in the last three decades, describes and discusses the most important geological, hydrological and biological characteristics of the Ligurian Sea. We show that this regional sea has largely been investigated in terms of its geological and structural evolution, as well as in terms of the sedimentation dynamics of the littoral and deep bottoms, with particular attention to the sedimentation balance of the beaches and their erosive processes. We report that the prevalent hydrodynamic and meteo-oceanographic conditions favour a continuous exchange of coastal water masses, and that the seasonal and interannual dynamics of water masses can effects the local climate, with direct and indirect consequences on fish and benthic communities documented in the last decade. We stress that although recent studies offer good knowledge of the distribution of coastal benthic communities, only scant information is available for the whole continental shelf, the submarine canyons and the rocky bathyal bottoms. Our meta-analysis reveals that significant fishing activities are monitored, but also that certain sectors of the biological resource are suffering, and suggests the set up of appropriate management measures. The Ligurian Sea hosts a number of Marine Protected Areas (MPAs) of high relevance, while the institution of the Whale Sanctuary completes the protection policy of the Regione Liguria. Our meta-analysis points out the need for long-term studies, based primarily on the analysis of those areas of the Ligurian Sea that have been little investigated to date. Finally, only properly addressed studies, using experimental approaches and along appropriate spatial and temporal scales, might allow us to understand the functioning of the Ligurian marine ecosystems, evaluate their health conditions and the dynamics of the main variables that affect the distribution of the single species (including species of high economic value) and benthic communities.
Hydrobiologia | 2000
Francesca Ferdeghini; Stefano Acunto; Silvia Cocito; Francesco Cinelli
This study was carried out on the rocky cliffs of Giannutri Island (Tyrrhenian Sea, Italy) to test the hypothesis that coralligenous assemblages are consistent within the bathymetric range considered (25–35 m depth) over three different spatial scales (1000 m, 100 m and 10 m). A multi-factorial sampling design was used to assess patterns of vertical distribution in the studied area. Data on the percent cover of algae and invertebrates were collected at three depths (25, 30 and 35 m) using a photographic method, and percentage cover was obtained using a visual method. Analysis of the results using ANOVA indicated that the distribution and abundance of algae and some invertebrates of the sublittoral assemblages are clearly heterogeneous. Algae, sponges and bryozoans showed significant variability in distribution and abundance at different depths, but this variability was not consistent amongst transects. Ascidians did not show any variability, while the abundance of anthozoans differed significantly amongst transects. We concluded that heterogeneity in the distribution and abundance of the taxa analysed is related to the smallest spatial scale investigated (10s of m). Some of the possible causes of the observed variability are discussed.
Journal of Experimental Marine Biology and Ecology | 2003
Silvia Cocito; Sergio Sgorbini; Andrea Peirano; M. Valle
This paper describes a 3-D reconstruction method which allows accurate measurements of volume, surface area and other morphometric measurements of three-dimensional biological objects, without removing them from the sea. It represents a novel approach based on multiple views (eight resulted to be sufficient) from underwater video images and a new image processing procedure (MOD3D), whose application has met the basic requirements (i.e. to work on images recorded in turbid waters, with nonuniform lighting, to investigate large areas and in reasonable time, etc.) imposed when operating in the marine environment with simple, easy-to-use and nonprofessional equipment. It is a noninvasive, nondestructive and in the field fast method, thus suitable for sampling also at relevant depth, whose applicability has specifically been set up for a range of growth forms from massive to submassive and irregularly shaped. The accuracy of the method was assessed using models with three levels of 3-D complexity: simple, moderate and complex morphology. A high accuracy of volume measurements made through MOD3D image analysis software was achieved when compared with the laboratory water displacement method, which represents the most accurate method for volume measurement, with an overall mean percent error of about 1.7% (S.D. 2.2%). For all three levels of morphologic complexity, no significant differences (p>0.05) were found. Volume measurements obtained in field based on geometric approximation resulted rough, with significant differences from the MOD3D values (p<0.05). The geometric approximation was lower than MOD3D for simple and moderate morphology, and variable for complex morphology. For all three models, MOD3D values for surface area computation were consistently lower (mean error 13%) than the foil-wrapping values (p<0.05), due to overlap error when foil wrapping. Two applications were made with the bryozoan Pentapora fascialis and the coral Cladocora caespitosa to quantify carbonate standing stock and biomass of these two carbonate framework builders, whose importance has been recently recognised among the temperate sublittoral benthic species. Time required for the 3-D reconstruction method (about 3 h) makes it suitable for routine application particularly for relatively large area investigations, with irregularly shaped objects on rough substrate and several biological objects within the area.
Facies | 2001
Silvia Cocito; Francesca Ferdeghini
SummaryPentapora fascialis, one of the largest living bryozoan, is often a predominant part of the benthos on hard subtidal bottoms in the Mediterranean Sea. Conversion factors calculated from laboratory measurements of colony size, biomass and skeleton weight, combined with density of colonies and mean annual growth rate allowed the estimation of carbonate standing stock, biomass and carbonate production ofPentapora fascialis in five sites in the Ligurian Sea. Carbonate standing stock ranged from 281 to 2490 g·m−2, colony biomass varied from 8.82 to 78.01 g·m−2, with a ratio biomass to carbonate standing stock of about 3%. Carbonate production of the bryozoan ranged in the five sites from 358 to 1214 g·m−2·y−1. If compared with the few data available on carbonate production of bryozoans and other sublittoral benthic bioconstructors in the temperate regions,Pentapora fascialis has to be considered one of the major contributors to the carbonatebudget.
Biological Reviews | 2015
Paul D. Taylor; Chiara Lombardi; Silvia Cocito
Many animal phyla have the physiological ability to produce biomineralized skeletons with functional roles that have been shaped by natural selection for more than 500 million years. Among these are bryozoans, a moderately diverse phylum of aquatic invertebrates with a rich fossil record and importance today as bioconstructors in some shallow‐water marine habitats. Biomineralizational patterns and, especially, processes are poorly understood in bryozoans but are conventionally believed to be similar to those of the related lophotrochozoan phyla Brachiopoda and Mollusca. However, bryozoan skeletons are more intricate than those of these two phyla. Calcareous skeletons have been acquired independently in two bryozoan clades – Stenolaemata in the Ordovician and Cheilostomata in the Jurassic – providing an evolutionary replicate. This review aims to highlight the importance of biomineralization in bryozoans and focuses on their skeletal ultrastructures, mineralogy and chemistry, the roles of organic components, the evolutionary history of bimineralization in bryozoans with respect to changes in seawater chemistry, and the impact of contemporary global changes, especially ocean acidification, on bryozoan skeletons. Bryozoan skeletons are constructed from three different wall types (exterior, interior and compound) differing in the presence/absence and location of organic cuticular layers. Skeletal ultrastructures can be classified into wall‐parallel (i.e. laminated) and wall‐perpendicular (i.e. prismatic) fabrics, the latter apparently found in only one of the two biomineralizing clades (Cheilostomata), which is also the only clade to biomineralize aragonite. A plethora of ultrastructural fabrics can be recognized and most occur in combination with other fabrics to constitute a fabric suite. The proportion of aragonitic and bimineralic bryozoans, as well as the Mg content of bryozoan skeletons, show a latitudinal increase into the warmer waters of the tropics. Responses of bryozoan mineralogy and skeletal thickness to oscillations between calcite and aragonite seas through geological time are equivocal. Field and laboratory studies of living bryozoans have shown that predicted future changes in pH (ocean acidification) combined with global warming are likely to have detrimental effects on calcification, growth rate and production of polymorphic zooids for defence and reproduction, although some species exhibit reasonable levels of resilience. Some key questions about bryozoan biomineralization that need to be addressed are identified.
Hydrobiologia | 2015
Giovanni Santangelo; Roberta Cupido; Silvia Cocito; L. Bramanti; Cristina Priori; Fabrizio Erra; Mimmo Iannelli
Over the last years, several marine populations suffered a drastic mortality increase of different origins; assessing the changes occurring in the demographic structure of such populations will allow evaluating their future trends and their ultimate fate. The aim of our research was to assess main demographic descriptors and related dynamics in populations of the Mediterranean gorgonians Paramuricea clavata and Corallium rubrum (the “precious red coral”) both subject to increased mortality, by life-history tables and Leslie-Lewis transition matrices. Gorgonian populations have been generally been considered to have low recruitment and low dynamics. Here, we test whether these features change when mortality rises and if such populations can reach new equilibria? Our findings show large differences between the two species examined, with lower recruitment and adult colony density, shorter life-span but over-abundant reproductive output in P. clavata. Recruitment density dependence was found in crowded populations of both species, albeit with different trends. Populations of both species tend to recover even after drastic mortality increase and P. clavata reaches a new equilibrium at lower densities than at pristine values, and this in a few years time. The findings in this review could shed some light on the poorly understood dynamics occurring in deep-water dwelling, affected populations of long-lived and slow-growing gorgonian corals.
Microbial Ecology | 2018
Jeroen A. J. M. van de Water; Christian R. Voolstra; Cécile Rottier; Silvia Cocito; Andrea Peirano; Denis Allemand; Christine Ferrier-Pagès
Populations of key benthic habitat-forming octocoral species have declined significantly in the Mediterranean Sea due to mass mortality events caused by microbial disease outbreaks linked to high summer seawater temperatures. Recently, we showed that the microbial communities of these octocorals are relatively structured; however, our knowledge on the seasonal dynamics of these microbiomes is still limited. To investigate their seasonal stability, we collected four soft gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa and Leptogorgia sarmentosa) and the precious red coral (Corallium rubrum) from two coastal locations with different terrestrial impact levels in the Mediterranean Sea, and used next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all soft gorgonian species were dominated by the same ‘core microbiome’ bacteria belonging to the Endozoicomonas and the Cellvibrionales clade BD1-7, whereas the red coral microbiome was primarily composed of ‘core’ Spirochaetes, Oceanospirillales ME2 and Parcubacteria. The associations with these bacterial taxa were relatively consistent over time at each location for each octocoral species. However, differences in microbiome composition and seasonal dynamics were observed between locations and could primarily be attributed to locally variant bacteria. Overall, our data provide further evidence of the intricate symbiotic relationships that exist between Mediterranean octocorals and their associated microbes, which are ancient and highly conserved over both space and time, and suggest regulation of the microbiome composition by the host, depending on local conditions.
PLOS ONE | 2016
Joanna Pilczynska; Silvia Cocito; Joana Boavida; Ester A. Serrão; Henrique Queiroga
Estimating the patterns of connectivity in marine taxa with planktonic dispersive stages is a challenging but crucial task because of its conservation implications. The red gorgonian Paramuricea clavata is a habitat forming species, characterized by short larval dispersal and high reproductive output, but low recruitment. In the recent past, the species was impacted by mass mortality events caused by increased water temperatures in summer. In the present study, we used 9 microsatellites to investigate the genetic structure and connectivity in the highly threatened populations from the Ligurian Sea (NW Mediterranean). No evidence for a recent bottleneck neither decreased genetic diversity in sites impacted by mass mortality events were found. Significant IBD pattern and high global FST confirmed low larval dispersal capability in the red gorgonian. The maximum dispersal distance was estimated at 20–60 km. Larval exchange between sites separated by hundreds of meters and between different depths was detected at each site, supporting the hypothesis that deeper subpopulations unaffected by surface warming peaks may provide larvae for shallower ones, enabling recovery after climatically induced mortality events.
Chemistry and Ecology | 2004
A. M. De Biasi; Carlo Nike Bianchi; S. Aliani; Silvia Cocito; A. Peirano; P. R. Dando; Carla Morri
A quantitative study of sessile macroepibenthos was carried out in Palaeochori Bay (Milos Island, Aegean Sea) using underwater, framed, still photographs. Images of sessile epibenthos were collected from four different rocky shoals at 10–35 m depth: shoal CR, where continuous vent activity was evident, and shoals E, ST and S, without evident vent activity. At each site images were taken from four stations with different slopes. Three replicate photo-samples were collected at each station. Correspondence analysis showed that the distribution of epibenthic communities was mainly related to ‘normal’ environmental gradients such as slope, distance from the shore and depth. No clear, univocal effect of venting was recognized. However, small differences between the vent and non-vent sites were detected under overhangs, where vent effects could be locally amplified due to the entrapment of venting fluids.
Royal Society Open Science | 2015
Chiara Lombardi; Silvia Cocito; Maria Cristina Gambi; Paul D. Taylor
Understanding is currently limited of the biological processes underlying the responses of modular organisms to climate change and the potential to adapt through morphological plasticity related to their modularity. Here, we investigate the effects of ocean acidification and seawater warming on the growth, life history and morphological plasticity in the modular bryozoan Calpensia nobilis using transplantation experiments in a shallow Mediterranean volcanic CO2 vents system that simulates pH values expected for the year 2100. Colonies exposed at vent sites grew at approximately half the rate of those from the control site. Between days 34 and 48 of the experiment, they reached a possible ‘threshold’, due to the combined effects of exposure time and pH. Temperature did not affect zooid length, but longer zooids with wider primary orifices occurred in low pH conditions close to the vents. Growth models describing colony development under different environmental scenarios suggest that stressed colonies of C. nobilis reallocate metabolic energy to the consolidation and strengthening of existing zooids. This is interpreted as a change in life-history strategy to support persistence under unfavourable environmental conditions. Changes in the skeletal morphology of zooids evident in C. nobilis during short-time (87 days) exposure experiments reveal morphological plasticity that may indicate a potential to adapt to the more acidic Mediterranean predicted for the future.