Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Danise is active.

Publication


Featured researches published by Silvia Danise.


Geology | 2009

Mediterranean fossil whale falls and the adaptation of mollusks to extreme habitats

Stefano Dominici; Elisabetta Cioppi; Silvia Danise; Ubaldo Betocchi; Gianni Gallai; Francesca Tangocci; G. Valleri; Simonetta Monechi

The hypothesis that sunken carcasses of Mesozoic marine reptiles and Cenozoic whales acted as evolutionary stepping stones to deep-sea reducing habitats is underlain by the question of whether vent-like, chemosymbiotic specialization fi rst evolved at shelf depths. Fossil skeletons of large whales have long been known from ancient shallow-water strata, but they have never been considered as a source of information on ecosystem development. We present a study on a 3 Ma old fossil whale fall and a survey of other Pliocene fossil skeletons to show that the associated biota is dominated by heterotrophs, with subsidiary chemoautotrophs. The taphonomy of the Mediterranean shelf whale falls shows some differences with respect to deep-water studies. Quantitative analyses of abundance data within a large data set on fossil and modern mollusk families confi rm that deep- and shallow-water communities at reducing habitats are composed of a different set of taxa, i.e., specialists occurring only below the shelf break. Mediterranean carcasses sunken in coastal settings do not seem to be favorable for the evolution of whale-fall specialists among the mollusks. The situation reverses as the shelf break is approached.


PLOS ONE | 2013

The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)

Silvia Danise; Richard J. Twitchett; Crispin T. S. Little; Marie-Emilie Clémence

The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of “dead zones” in modern oceans.


Geology | 2015

Environmental controls on Jurassic marine ecosystems during global warming

Silvia Danise; Richard J. Twitchett; Crispin T. S. Little

The fossil record has the potential to provide valuable insights into species response to past climate change if paleontological data are combined with appropriate proxies of environmental change. Here we use a novel, multivariate approach that combines a suite of geochemical proxies with high-resolution quantitative macroinvertebrate fossil data to study responses to early Toarcian warming (ca. 183 Ma). We show that benthic and nektonic ecosystems became decoupled during warming and were driven by different environmental variables. Benthic turnover was mostly driven by variations in seawater dissolved oxygen concentration, whereas turnover among the nektonic cephalopods was primarily controlled by variations in weathering, nutrient runoff, and primary productivity. Although rapid warming has been invoked as the main trigger of this event, the paleotemperature proxy was a poor predictor of marine community dynamics, and abiotic factors indirectly linked to temperature were more important. Given that similar environmental changes characterize other episodes of global warming and are impacting present-day marine communities, we predict that similar ecological responses occurred during other past events and are a probable outcome of current changes.


PLOS ONE | 2017

Subsequent biotic crises delayed marine recovery following the late Permian mass extinction event in northern Italy

William J. Foster; Silvia Danise; Gregory D. Price; Richard J. Twitchett

The late Permian mass extinction event was the largest biotic crisis of the Phanerozoic and has the longest recovery interval of any extinction event. It has been hypothesised that subsequent carbon isotope perturbations during the Early Triassic are associated with biotic crises that impeded benthic recovery. We test this hypothesis by undertaking the highest-resolution study yet made of the rock and fossil records of the entire Werfen Formation, Italy. Here, we show that elevated extinction rates were recorded not only in the Dienerian, as previously recognised, but also around the Smithian/Spathian boundary. Functional richness increases across the Smithian/Spathian boundary associated with elevated origination rates in the lower Spathian. The taxonomic and functional composition of benthic faunas only recorded two significant changes: (1) reduced heterogeneity in the Dienerian, and (2) and a faunal turnover across the Smithian/Spathian boundary. The elevated extinctions and compositional shifts in the Dienerian and across the Smithian/Spathian boundary are associated with a negative and positive isotope excursion, respectively, which supports the hypothesis that subsequent biotic crises are associated with carbon isotope shifts. The Spathian fauna represents a more advanced ecological state, not recognised in the previous members of the Werfen Formation, with increased habitat differentiation, a shift in the dominant modes of life, appearance of stenohaline taxa and the occupation of the erect and infaunal tiers. In addition to subsequent biotic crises delaying the recovery, therefore, persistent environmental stress limited the ecological complexity of benthic recovery prior to the Spathian.


PALAIOS | 2010

Mollusk species at a Pliocene shelf whale fall (Orciano Pisano, Tuscany)

Silvia Danise; Stefano Dominici; Ubaldo Betocchi

Abstract The recovery of an intact, 10 m long fossil baleen whale from the Pliocene of Tuscany (Italy) offers the first opportunity to study the paleoecology of a fully developed, natural whale-fall community at outer shelf depth. Quantitative data on mollusk species from the whale fall have been compared with data from the sediments below and around the bones, representing the fauna living in the muddy bottom before and during the sinking of the carcass, but at a distance from it. Although the bulk of the fauna associated with the fossil bones is dominated by the same heterotrophs as found in the surrounding community, whale-fall samples are distinguishable primarily by the presence of chemosymbiotic bivalves and a greater species richness of carnivores and parasites. Large lucinid clams (Megaxinus incrassatus) and very rare small mussels (Idas sp.) testify to the occurrence of a sulphophilic stage, but specialized, chemosymbiotic vesicomyid clams common at deep-sea whale falls are absent. The Orciano whale-fall community is at the threshold between the nutrient-poor deep sea and the shallow-water shelf, where communities are shaped around photosynthetic trophic pathways and chemosymbiotic specialists are excluded by competition.


Journal of Systematic Palaeontology | 2017

A silicified Early Triassic marine assemblage from Svalbard

William J. Foster; Silvia Danise; Richard J. Twitchett

Understanding how the marine biosphere recovered from the late Permian mass extinction event is a major evolutionary question. The quality of the global fossil record of this interval is, however, somewhat poor due to preservational, collection and sampling biases. Here we report a new earliest Induan (Hindeodus parvus Zone) marine assemblage from the Deltadalen Member of the Vikinghøgda Formation, central Spitsbergen, which fills a critical gap in knowledge. The fully silicified fossils comprise the oldest silicified assemblage known from the Triassic and provide critical new systematic data. For its age, the assemblage is exceptionally diverse with 14 species of bivalves and gastropods, as well as conodonts and ammonoids. Four new bivalve species (Austrotindaria antiqua, A. svalbardensis, Nucinella taylori and N. nakremi) and one new gastropod species (Glabrocingulum parvum) are described, and five families are recorded in the Induan for the first time. Some of the common and globally widespread Early Triassic taxa, such as Unionites, are also present, and their exceptional preservation reveals key morphological characters that are documented for the first time. Taxonomic and ecological revisions based on these new data suggest that shallow-infaunal deposit-feeders were a dominant component of pre-Spathian benthic communities. The gastropods and bivalves all possessed a planktotrophic larval stage, which may have been a particular advantage in the wake of the late Permian mass extinction. http://zoobank.org/urn:lsid:zoobank.org:pub:3EBCAEF3-27C2-4216-9F18-89F195FA534F


Biology Letters | 2015

Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls.

Silvia Danise; Nicholas D. Higgs

We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic–Cenozoic origin (approx. 50–100 Myr).


Nature Communications | 2014

Ecological succession of a Jurassic shallow-water ichthyosaur fall

Silvia Danise; Richard J. Twitchett; Katie Matts

After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early ‘mobile-scavenger’ and ‘enrichment-opportunist’ stages were not succeeded by a ‘sulphophilic stage’ characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed ‘reef stage’ with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities.


Marine Biology Research | 2014

Molluscs from a shallow-water whale-fall and their affinities with adjacent benthic communities on the Swedish west coast

Silvia Danise; Stefano Dominici; Adrian G. Glover; Thomas G. Dahlgren

Abstract We conducted a species-level study of molluscs associated with a 5-m long carcass of a minke whale at a depth of 125 m in the Kosterfjord (North Sea, Sweden). The whale-fall community was quantitatively compared with the community commonly living in the surrounding soft-bottom sediments. Five years after the deployment of the dead whale at the sea floor, the sediments around the carcass were dominated by the bivalve Thyasira sarsi, which is known to contain endosymbiotic sulphur-oxidizing bacteria, while background sediments were dominated by another thyasirid, T. equalis, less dependent on chemosynthesis for its nutrition. The Kosterfjord samples were further compared at the species level with mollusc abundance data derived from the literature, including samples from different marine settings of the west coast of Sweden (active methane seep, fjords, coastal and open marine environments). The results show high similarity between the Kosterfjord whale-fall community and the community that developed in one of the Swedish fjords (Gullmar Fjord) during hypoxic conditions. This study indicates that at shallow-water whale-falls, the sulphophilic stage of the ecological succession is characterized by generalist chemosynthetic bivalves commonly living in organic-rich, sulphidic environments.


Palaeontology | 2017

Faunal response to sea-level and climate change in a short-lived seaway: Jurassic of the Western Interior, USA

Silvia Danise; Steven M. Holland

Abstract Understanding how regional ecosystems respond to sea‐level and environmental perturbations is a main challenge in palaeoecology. Here we use quantitative abundance estimates, integrated within a sequence stratigraphic and environmental framework, to reconstruct benthic community changes through the 13 myr history of the Jurassic Sundance Seaway in the western United States. Sundance Seaway communities are notable for their low richness and high dominance relative to most areas globally in the Jurassic, and this probably reflects steep temperature and salinity gradients along the 2000 km length of the Seaway that hindered colonization of species from the open ocean. Ordination of samples shows a main turnover event at the Middle–Upper Jurassic transition, which coincided with a shift from carbonate to siliciclastic depositional systems in the Seaway, probably initiated by northward drift from subtropical latitudes to more humid temperate latitudes, and possibly global cooling. Turnover was not uniform across the onshore–offshore gradient, but was higher in offshore environments. The higher resilience of onshore communities to third‐order sea‐level fluctuations and to the change from a carbonate to a siliciclastic system was driven by a few abundant eurytopic species that persisted from the opening to the closing of the Seaway. Lower stability in offshore facies was instead controlled by the presence of more volatile stenotopic species. Such increased onshore stability in community composition contrasts with the well‐documented onshore increase in taxonomic turnover rates, and this study underscores how ecological analyses of relative abundance may contrast with taxonomically based analyses. We also demonstrate the importance of a stratigraphic palaeobiological approach to reconstructing the links between environmental and faunal gradients, and how their evolution through time produces local stratigraphic changes in community composition.

Collaboration


Dive into the Silvia Danise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Foster

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge