Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Deiss is active.

Publication


Featured researches published by Silvia Deiss.


Neuron | 1993

Guidance and topographic stabilization of nasal chick retinal axons on target-derived components in vitro

Ysander von Boxberg; Silvia Deiss; Uli Schwarz

We studied mechanisms underlying the generation of topographic order within the developing chick retinotectal connection by combining the recently introduced stripe assay with a novel membrane protein fractionation technique. Our experiments show a preference of temporal and nasal retinal fibers for growing on cell membranes prepared from their proper target area. In addition, membrane preparations from posterior tectum were found to prolong substantially the survival of nasal neurites in vitro. We conclude that tropic as well as trophic interactions contribute to the generation of topographic maps during embryogenesis, in our case to the homing of nasal axons within the posterior tectum.


Developmental Biology | 1984

Axon growth in embryonic chick and quail retinal whole mounts in vitro

Willi Halfter; Silvia Deiss

Whole retinae of 4- to 10-day-old chick and quail embryos were spread on membrane filters and kept in culture for up to 4 days. Axon growth during culture was demonstrated by silver staining, anterograde labeling of fibers with RITC, time-lapse recording, and SEM. Fiber growth was observed in specimens from chick embryos up to 7 days old, with a growth maximum at E6 and from quail embryos up to E6 with the maximum at E5. Newly growing axons followed the optic fiber pattern already existing and, like axons in vivo, grew predominantly toward the optic fissure. Directional and orientational adaptation of newly growing axons to the preexisting fibers increased with the donor age. Retinae from donors up to E5 in chick and up to E4 in quail showed a high proportion of axons which crossed the optic fissure during the culture period and invaded the opposite retinal fiber layer. These fibers showed a correct radial orientation while growing in the opposite direction to normal. Likewise, in cultures from these young donors some fibers grew out initially in the diametrically opposite direction to normal toward the tissue periphery. Since all of the wrongly directed axons grew at the same rate as normal and adapted correctly to the already formed axon pattern, this suggests independent signals for the direction and orientation of growing fibers. Treatment of mounted retinae with collagenase or trypsin removed the vitreal retinal surface, leaving the existing axon pattern intact. Subsequently, new axons grew profusely in culture, but lost both their orientational and directional characteristics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Complete Fiber Structures of Complex Trimeric Autotransporter Adhesins Conserved in Enterobacteria.

Marcus D. Hartmann; Iwan Grin; Stanislaw Dunin-Horkawicz; Silvia Deiss; Dirk Linke; Andrei N. Lupas; Birte Hernandez Alvarez

Trimeric autotransporter adhesins (TAAs) are modular, highly repetitive surface proteins that mediate adhesion to host cells in a broad range of Gram-negative pathogens. Although their sizes may differ by more than one order of magnitude, they all follow the same basic head-stalk-anchor architecture, where the head mediates adhesion and autoagglutination, the stalk projects the head from the bacterial surface, and the anchor provides the export function and attaches the adhesin to the bacterial outer membrane after export is complete. In complex adhesins, head and stalk domains may alternate several times before the anchor is reached. Despite extensive sequence divergence, the structures of TAA domains are highly constrained, due to the tight interleaving of their constituent polypeptide chains. We have therefore taken a “domain dictionary” approach to characterize representatives for each domain type by X-ray crystallography and use these structures to reconstruct complete TAA fibers. With SadA from Salmonella enterica, EhaG from enteropathogenic Escherichia coli (EHEC), and UpaG from uropathogenic E. coli (UPEC), we present three representative structures of a complex adhesin that occur in a conserved genomic context in Enterobacteria and is essential in the infection process of uropathogenic E. coli. Our work proves the applicability of the dictionary approach to understanding the structure of a class of proteins that are otherwise poorly tractable by high-resolution methods and provides a basis for the rapid and detailed annotation of newly identified TAAs.


Journal of Structural Biology | 2014

Your Personalized Protein Structure: Andrei N. Lupas Fused to GCN4 Adaptors.

Silvia Deiss; Birte Hernandez Alvarez; Kerstin Bär; Carolin P. Ewers; Murray Coles; Reinhard Albrecht; Marcus D. Hartmann

This work presents a protein structure that has been designed purely for aesthetic reasons, symbolizing decades of coiled-coil research and praising its most fundamental model system, the GCN4 leucine zipper. The GCN4 leucine zipper is a highly stable coiled coil which can be tuned to adopt different oligomeric states via mutation of its core residues. For these reasons it is used in structural studies as a stabilizing fusion adaptor. On the occasion of the 50th birthday of Andrei N. Lupas, we used it to create the first personalized protein structure: we fused the sequence ANDREI-N-LVPAS in heptad register to trimeric GCN4 adaptors and determined its structure by X-ray crystallography. The structure demonstrates the robustness and versatility of GCN4 as a fusion adaptor. We learn how proline can be accommodated in trimeric coiled coils, and put the structure into the context of the other GCN4-fusion structures known to date.


Experimental Cell Research | 2003

Glial and neuronal regulation of the lipid carrier R-FABP

Thomas Helle; Silvia Deiss; Uli Schwarz; Burkhard Schlosshauer

Neuroembryogenesis critically depends on signaling molecules that modulate cell proliferation, differentiation, and the formation of neural networks. In an attempt to identify potential morphogenetic active components that are distributed in a graded fashion in the developing nervous system, we generated substraction libraries of the embryonic nasal and temporal chick retina. Selected clones were analyzed by sequencing, Northern and Western blotting, in situ hybridization, and immunocytochemistry. Retinal fatty acid-binding protein (R-FABP) mRNA displayed the most pronounced topographic gradient. R-FABP was most strongly expressed in nasal retina, though topographic differences were not evident on the protein level. R-FABP expression was subject to a pronounced spatio-temporal regulation. Peak expression was at the period of cell generation/migration and differentiation. To identify the cell types involved in R-FAPB synthesis, ganglion cells as the only retinal projection neurons were enriched by enzymatic delayering. Cell somata, axons, and growth cones were R-FABP immunoreactive. Most interestingly, R-FABP immunoreactivity was critically dependent on the growth substratum. It was abrogated when axons grew on isolated glial endfeet. Radial glia purified by complement-mediated cytolysis also expressed R-FABP at moderate levels. The expression level was significantly increased during mitosis and dropped down again in postmitotic cells. Further on, transient loss of cell-cell and substratum contact induced a subcellular redistribution of R-FABP. In conjunction with the morphogen-binding activity of other FABP family members and their impact on cell migration and tissue differentiation, R-FABP characteristics suggest a regulatory function during retinal histogenesis but not during topographic map formation.


Journal of Medicinal Chemistry | 2016

A FRET-Based Assay for the Identification and Characterization of Cereblon Ligands

I. Boichenko; Silvia Deiss; Kerstin Bär; Marcus D. Hartmann; Birte Hernandez Alvarez

Cereblon serves as an ubiquitin ligase substrate receptor that can be tuned toward different target proteins by various cereblon-binding agents. This offers one of the most promising avenues for targeted protein degradation in cancer therapy, but cereblon binding can also mediate teratogenic effects. We present an effective assay that is suited for high-throughput screening of compound libraries for off-target cereblon interactions but also can guide lead optimization and rational design of novel cereblon effector molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor

Gregory J. Velicer; Günter Raddatz; Heike Keller; Silvia Deiss; Christa Lanz; Iris Dinkelacker; Stephan C. Schuster


The Journal of Comparative Neurology | 1985

The formation of the axonal pattern in the embryonic avian retina

Willi Halfter; Silvia Deiss; Uli Schwarz


Developmental Biology | 1986

Axonal pathfinding in organ-cultured embryonic avian retinae.

Willi Halfter; Silvia Deiss


Developmental Biology | 1984

Axon growth in embryonic chick and quail retinal whole mounts

Willi Halfter; Silvia Deiss

Collaboration


Dive into the Silvia Deiss's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge