Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Dolder is active.

Publication


Featured researches published by Silvia Dolder.


Journal of Bone and Mineral Research | 2006

Effect of monoterpenes on the formation and activation of osteoclasts in vitro

Silvia Dolder; Willy Hofstetter; Antoinette Wetterwald; Roman C. Mühlbauer; Rolf Felix

Monoterpenes, present in aromatic plants, are known to inhibit bone resorption in vivo. In this in vitro study, they inhibited the activation of osteoclasts only at high concentrations but inhibited the formation at much lower concentrations. Therefore, monoterpenes may act in vivo directly on osteoclastogenesis.


Bone | 2011

TNFα inhibits the development of osteoclasts through osteoblast-derived GM-CSF

Elvis Atanga; Silvia Dolder; Tina Dauwalder; Antoinette Wetterwald; Willy Hofstetter

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.


PLOS ONE | 2015

Sodium-Dependent Phosphate Transporters in Osteoclast Differentiation and Function

Giuseppe Albano; Matthias B. Moor; Silvia Dolder; Mark Siegrist; Carsten A. Wagner; Jürg Biber; Nati Hernando; Wilhelm Hofstetter; Olivier Bonny; Daniel Fuster

Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expression of sodium-dependent phosphate transport protein IIa (NaPi-IIa) transcript and protein during osteoclast development, but no expression of the closely related NaPi-IIb and NaPi-IIc SLC34 family isoforms. In vitro studies employing NaPi-IIa-deficient osteoclast precursors and mature osteoclasts reveal that NaPi-IIa is dispensable for bone resorption and osteoclast differentiation. These results are supported by the analysis of structural bone parameters by high-resolution microcomputed tomography that yielded no differences between adult NaPi-IIa WT and KO mice. By contrast, both type III sodium-dependent phosphate transporters Pit-1 and Pit-2 were abundantly expressed throughout osteoclast differentiation, indicating that they are the relevant sodium-dependent phosphate transporters in osteoclasts and osteoclast precursors. We conclude that phosphate transporters of the SLC34 family have no role in osteoclast differentiation and function and propose that Pit-dependent phosphate transport could be pivotal for bone resorption and should be addressed in further studies.


Bone | 2014

Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics

John Choy; Christoph E. Albers; Klaus A. Siebenrock; Silvia Dolder; Wilhelm Hofstetter; Frank M. Klenke

β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies are needed to confirm the current in vitro findings.


Bone | 2013

Expression of antagonists of WNT and BMP signaling after non-rigid fixation of osteotomies

Marc-Oliver Montjovent; Mark Siegrist; Frank M. Klenke; Antoinette Wetterwald; Silvia Dolder; Wilhelm Hofstetter

Delayed fracture healing and non-unions represent rare but severe complications in orthopedic surgery. Further knowledge on the mechanisms of the bone repair process and of the development of a pseudoarthrosis is essential to predict and prevent impaired healing of fractures. The present study aimed at elucidating differences in gene expression during the repair of rigidly and non-rigidly fixed osteotomies. For this purpose, the MouseFix™ and the FlexiPlate™ systems (AO Development Institute, Davos, CH), allowing the creation of well defined osteotomies in mouse femora, were employed. A time course following the healing process of the osteotomy was performed and bones and periimplant tissues were analyzed by high-resolution X-ray, MicroCT and by histology. For the assessment of gene expression, Low Density Arrays (LDA) were done. In animals with rigid fixation, X-ray and MicroCT revealed healing of the osteotomy within 3 weeks. Using the FlexiPlate™ system, the osteotomy was still visible by X-ray after 3 weeks and a stabilizing cartilaginous callus was formed. After 4.5 weeks, the callus was remodeled and the osteotomy was, on a histological level, healed. Gene expression studies revealed levels of transcripts encoding proteins associated with inflammatory processes not to be altered in tissues from bones with rigid and non-rigid fixation, respectively. Levels of transcripts encoding proteins of the extracellular matrix and essential for bone cell functions were not increased in the rigidly fixed group when compared to controls without osteotomy. In the FlexiPlate™ group, levels of transcripts encoding the same set of genes were significantly increased 3 weeks after surgery. Expression of transcripts encoding BMPs and BMP antagonists was increased after 3 weeks in repair tissues from bones fixed with FlexiPlate™, as were inhibitors of the WNT signaling pathways. Little changes only were detected in transcript levels of tissues from rigidly fixed bones. The data of the present study suggest that rigid fixation enables accelerated healing of an experimental osteotomy as compared to non-rigid fixation. The changes in the healing process after non-rigid fixation are accompanied by an increase in the levels of transcripts encoding inhibitors of osteogenic pathways and, probably as a consequence, by temporal changes in bone matrix synthesis.


Bone | 2017

Granulocyte-macrophage colony-stimulating factor-dependent CD11c-positive cells differentiate into active osteoclasts

Nina Ruef; Silvia Dolder; Daniel Aeberli; Michael Seitz; Deepak Balani; Wilhelm Hofstetter

Levels of circulating cytokines are elevated in inflammatory diseases. Previously, it was shown that interleukin (IL-)17A, in synergism with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and tumor necrosis factor α (TNFα), induces the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) by murine osteoblasts in vitro. In this study, we further analyzed the effects of GM-CSF on osteoclast development in vitro. The effects of IL-17A, TNFα, and 1,25(OH)2D3 on the regulation of osteoclast development were investigated in cocultures of bone marrow-derived osteoclast progenitor cells (OPC) and mouse calvarial osteoblasts. Additionally, OPC were grown for 3days in media containing macrophage colony-stimulating factor (M-CSF), GM-CSF, or M-CSF/GM-CSF. Subsequently, the osteoclastogenic potential and the capacity to dissolve amorphous calcium phosphate were assessed in each of the three populations of OPC. IL-17A, in synergism with TNFα and 1,25(OH)2D3, inhibited the development of osteoclasts in cocultures by stimulating the osteoblast lineage cells to release GM-CSF. GM-CSF-treated OPC expressed traits characteristic of dendritic cells. Upon removal of GM-CSF and supplementation of the culture media with M-CSF/RANKL, the cells lost their dendritic cell characteristics and differentiated into osteoclasts. OPC pretreated with GM-CSF and M-CSF/GM-CSF exhibited delayed development to osteoclasts and an extended proliferation phase. Elevated levels of GM-CSF in systemic inflammatory diseases may cause an expansion of the OPC pools in the bone, bone marrow, and blood. Upon homing to the bone, this may lead to an increase in the number of osteoclasts and in bone resorption.


Calcified Tissue International | 2016

Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells.

Wenjie Xie; Silvia Dolder; Mark Siegrist; Antoinette Wetterwald; Wilhelm Hofstetter

Development and function of osteoblast lineage cells are regulated by a complex microenvironment consisting of the bone extracellular matrix, cells, systemic hormones and cytokines, autocrine and paracrine factors, and mechanical load. Apart from receptors that transduce extracellular signals into the cell, molecular transporters play a crucial role in the cellular response to the microenvironment. Transporter molecules are responsible for cellular uptake of nutritional components, elimination of metabolites, ion transport, and cell–cell communication. In this report, the expression of molecular transporters in osteoblast lineage cells was investigated to assess their roles in cell development and activity. Low-density arrays, covering membrane and vesicular transport molecules, were used to assess gene expression in osteoblasts representing early and late differentiation states. Receptors and transporters for the amino acid glutamate were found to be differentially expressed during osteoblast development. Glutamate is a neurotransmitter in the central nervous system, and the mechanisms of its release, signal transduction, and cellular reabsorption in the synaptic cleft are well understood. Less clear, however, is the control of equivalent processes in peripheral tissues. In primary osteoblasts, inhibition of glutamate transporters with nonselective inhibitors leads to an increase in the concentration of extracellular glutamate. This change was accompanied by a decrease in osteoblast proliferation, stimulation of alkaline phosphatase, and the expression of transcripts encoding osteocalcin. Enzymatic removal of extracellular glutamate abolished these pro-differentiation effects, as did the inhibition of PKC- and Erk1/2-signaling pathways. These findings demonstrate that glutamate signaling promotes differentiation and activation of osteoblast lineage cells. Consequently, the glutamate system may represent a putative therapeutic target to induce an anabolic response in the skeletal system. Known antagonists of glutamate transporters will serve as lead compounds in developing new and specific bioactive molecules.


JBMR Plus | 2018

Redox-Dependent Bone Alkaline Phosphatase Dysfunction Drives Part of the Complex Bone Phenotype in Mice Deficient for Memo1 : LOSS OF MEMO IMPAIRS ALKALINE PHOSPHATASE FUNCTION

Matthias B. Moor; Suresh Krishna Ramakrishnan; Finola Legrand; Silvia Dolder; Mark Siegrist; Fanny Durussel; Gabriel Centeno; Dmitri Firsov; Nancy E. Hynes; Willy Hofstetter; Olivier Bonny

Mediator of ErbB2‐driven cell Motility 1 (MEMO1) is an intracellular redox protein that integrates growth factors signaling with the intracellular redox state. We have previously reported that mice lacking Memo1 displayed higher plasma calcium levels and other alterations of mineral metabolism, but the underlying mechanism was unresolved and the bone phenotype was not described. Here, we show that Cre/lox‐mediated MEMO1 deletion in the whole body of C57Bl/6 mice (Memo cKO) leads to severely altered trabecular bone and lower mineralization, with preserved osteoblast and osteoclast number and activity, but altered osteoblast response to epidermal growth factor (EGF) and FGF2. More strikingly, Memo cKO mice display decreased alkaline phosphatase (ALP) activity in serum and in bone, while ALPL expression level is unchanged. Bone intracellular redox state is significantly altered in Memo cKO mice and we inferred that ALP dimerization was reduced in Memo cKO mice. Indeed, despite similar ALP oxidation, we found increased ALP sensitivity to detergent in Memo cKO bone leading to lower ALP dimerization capability. Thus, we report a severe bone phenotype and dysfunctional bone ALP with local alteration of the redox state in Memo cKO mice that partially mimics hypophosphatasia, independent of ALPL mutations. These findings reveal Memo as a key player in bone homeostasis and underline a role of bone redox state in controlling ALP activity.


Pflügers Archiv: European Journal of Physiology | 2017

Increased bone resorption by osteoclast-specific deletion of the sodium/calcium exchanger isoform 1 (NCX1)

Giuseppe Albano; Silvia Dolder; Mark Siegrist; Annie Mercier-Zuber; Muriel Auberson; Candice Stoudmann; Wilhelm Hofstetter; Olivier Bonny; Daniel Guido Fuster

Calcium is a key component of the bone mineral hydroxyapatite. During osteoclast-mediated bone resorption, hydroxyapatite is dissolved and significant quantities of calcium are released. Several calcium transport systems have previously been identified in osteoclasts, including members of the sodium/calcium exchanger (NCX) family. Expression pattern and physiological role of NCX isoforms in osteoclasts, however, remain largely unknown at the moment. Our data indicate that all three NCX isoforms (NCX1, NCX2, and NCX3) are present in murine osteoclasts. RANKL-induced differentiation of murine osteoclast precursors into mature osteoclasts significantly attenuated the expression of NCX1, while NCX2 and NCX3 expressions were largely unaffected. To study the role of NCX1 during osteoclast differentiation and bone resorption, we crossed mice with exon 11 of the NCX1 gene flanked by loxP sites with cathepsin K-Cre transgenic mice. Mature osteoclasts derived from transgenic mice exhibited an 80–90% reduction of NCX1 protein. In vitro studies indicate that NCX1 is dispensable for osteoclast differentiation, but NCX1-deficient osteoclasts exhibited increased resorptive activity. In line with these in vitro findings, mice with an osteoclast-targeted deletion of the NCX1 gene locus displayed an age-dependent loss of bone mass. Thus, in summary, our data reveal NCX1 as a regulator of osteoclast-mediated bone resorption.


Bone | 2006

Tumor necrosis factor-alpha: alternative role as an inhibitor of osteoclast formation in vitro.

Renate Balga; Antoinette Wetterwald; Jeannette Portenier; Silvia Dolder; Christoph Mueller; Willy Hofstetter

Collaboration


Dive into the Silvia Dolder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge