Silvia Espinosa-Matías
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Espinosa-Matías.
The Plant Cell | 2010
Elena R. Alvarez-Buylla; Barbara A. Ambrose; Eduardo Flores-Sandoval; Francisco Vergara-Silva; Marie Englund; Adriana Garay-Arroyo; Berenice García-Ponce; Eduardo de la Torre-Bárcena; Silvia Espinosa-Matías; Esteban Martínez; Alma Piñeyro-Nelson; Peter Engström; Elliot M. Meyerowitz
This article shows that the peculiar expression pattern of a functionally conserved floral gene (APETALA3-like) in the center of the Lacandonia schismatica flower underlies its unique inside-out arrangement (i.e., central stamens surrounded by carpels). Thus, relatively simple genetic alterations may underlie large morphological shifts fixed in extant natural populations. Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa.
International Journal of Plant Sciences | 2003
Francisco Vergara-Silva; Silvia Espinosa-Matías; Barbara A. Ambrose; Sonia Vázquez-Santana; Alejandro Martínez‐Mena; Judith Márquez-Guzmán; Esteban Martínez; Elliot M. Meyerowitz; Elena R. Alvarez-Buylla
Lacandonia schismatica, a mycoheterotrophic, hermaphroditic monocotyledon endemic to the Lacandon rain forest of southeast Mexico, is the only flowering plant for which a spatial inversion (heterotopy, complete homeosis) of the reproductive floral whorls (stamens and carpels) is known to occur in natural populations. In order to investigate if this autapomorphic inside‐out arrangement of the reproductive organs is fixed in natural populations, we have undertaken extensive and intensive fieldwork spanning several years to locate new populations in addition to the type locality. In parallel, we have also searched for natural variation in floral organ arrangement in Triuris brevistylis, a closely related dioecious triurid that is found in nearby areas of the Lacandon forest. We have found that a small proportion of L. schismatica inflorescences bear unisexual flowers of both sexes, as well as bisexual flowers with differences in the number of reproductive organs. However, in all bisexual flowers, the stamens were always central and the carpels peripheral to them. More important, we have also found that a few T. brevistylis individuals have bisexual flowers with altered positions of stamens and carpels. Among these, flowers with an inside‐out L. schismatica–like floral organ arrangement were observed. We document our findings with scanning electron micrographs, histological sections, and dissection microscope views. The information presented implies that the developmental‐genetic mechanism putatively responsible for homeotic/heterotopic transformations involving floral reproductive organs in the two triurid species originated at least before these taxa diverged from each other. The Mexican triurids may be an example in which the molecular evolutionary events causally related to a major morphological change in plants can best be understood at the microevolutionary scale.
Applied and Environmental Soil Science | 2011
María Esther Sánchez-Coronado; Judith Márquez-Guzmán; Jeanette Rosas-Moreno; Guadalupe Vidal-Gaona; Margarita Villegas; Silvia Espinosa-Matías; Yadira Olvera-Carrillo; Alma Orozco-Segovia
The funicular cover of the Opuntia tomentosa seed limits imbibition; germination occurs only when the funicle is weakened or the funicular valve is removed. We investigated the role of fungi in funicular weakening and seed germination. Seeds that had been either buried in one of two sites or stored in the laboratory were germinated with and without a valve. Disinfected or nondisinfected seeds and their naked embryos were cultivated on agar or PDA. None of the 11 identified fungal genera grew on the disinfected control seeds or the embryos. The mycoflora present on disinfected and nondisinfected exhumed seeds suggest that the fungal colonization occurred in the soil and differed between the burial sites. Exhumed seeds with and without a valve germinated in high percentages, whereas only the control seeds without a valve germinated. Scanning electron micrographs showed that the hyphae penetrated, cracked, and eroded the funicular envelope of exhumed seeds.
Micron | 2013
María del Rosario Ramírez-Trejo; Blanca Pérez-García; Aniceto Mendoza-Ruiz; Ricardo Valdez-Avila; Silvia Espinosa-Matías
This paper describes the development of the sexual phase of the invasive fern, Pteridium caudatum, from spore germination to young sporophyte formation. Spores samples for gametophyte cultures were taken from various sporophytes and then sown on mineral agar with Thompsons media. Gametophytes were maintained under fluorescent light on a 12h light, 12h dark cycle at 24-25°C. Developmental phases were fixed in FAA-sucrose solution and processed for observation with the scanning electron microscope. Spores are trilete and germination takes place on the second day after sowing; germination is of the Vittaria-type. Adiantum-type prothallial development was observed. The differentiation of a two-dimensional thallus begins 5 days after germination maturation of adult gametophytes occurs about 30 days after sowing. Adult gametophytes are heart-shaped, bisexual and glabrous. Antheridia are formed by three cells: basal, annular and opercular cell with a pore. Archegonia have a neck of 4-cells. The young sporophyte becomes visible within 8 weeks after spores are sown. The taxonomic significance of the gametophyte morphology is discussed.
Micron | 2010
Blanca Pérez-García; Aniceto Mendoza-Ruiz; Silvia Espinosa-Matías; Luis Diego Gómez-Pignataro
This paper describes the morphology of the sexual phase and spores of Platycerium andinum and Platycerium wandae. Spores were sown in Thompsons media and the cultures were kept at 24-25 degrees C, with 12h light/darkness photoperiod. Developmental phases were fixed in FAA and processed for observation with the scanning electron microscope. Spores of both species are monolete; Vittaria-type germination and Aspidium-type prothallial development were observed. In the phase of development, the gametophytes develop unicellular secretory and as they mature, develop bifurcated or branched pluricellular trichomes, both in the cushion and near the meristematic zone. Adult gametophytes in culture are cordiform-spatulate to cordiform-reniform, most are unisexual and a few are bisexual. Gametangia belong to the leptosporangiate fern type. Archegonial morphology is uniform, with an elongate, thin neck curved toward the base of the gametophyte. Antheridia have a basal cell, an annular cell and an undivided opercular cell. Three hundred days after the spores were sown, sporophytes still had not developed. In both species, some spores germinate inside the sporangial capsule (intra-sporangial germination). We provide new information on morphogenesis in the genus Platycerium.
American Journal of Botany | 2006
Barbara A. Ambrose; Silvia Espinosa-Matías; Sonia Vázquez-Santana; Francisco Vergara-Silva; Esteban Martínez; Judith Márquez-Guzmán; Elena R. Alvarez-Buylla
Acta Botanica Mexicana | 2014
Yuri B. Okolodkov; Fany del Carmen Merino-Virgilio; José Antolín Aké-Castillo; Ana Concepción Aguilar-Trujillo; Silvia Espinosa-Matías; Jorge A. Herrera-Silveira
Acta Botanica Mexicana | 2014
Yuri B. Okolodkov; Fany del Carmen Merino-Virgilio; José Antolín Aké-Castillo; Ana Concepción Aguilar-Trujillo; Silvia Espinosa-Matías; Jorge A. Herrera-Silveira
Revista De Biologia Tropical | 2017
Alejandra Castrejón-Varela; Blanca Pérez-García; Aniceto Mendoza-Ruiz; Silvia Espinosa-Matías
Interciencia | 2016
Silvia Espinosa-Matías; Roberto Llanos-Romero; Álvaro Delfino Campos Villanueva; Blanca Pérez-García; Josefina Herrera-Santoyo; Patricia Guevara-Fefer