Silvia Ferrara
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Ferrara.
PLOS ONE | 2012
Silvia Ferrara; Margherita Brugnoli; Angela De Bonis; Francesco Righetti; Francesco Delvillani; Gianni Dehò; David S. Horner; Federica Briani; Giovanni Bertoni
Pseudomonas aeruginosa is a highly adaptable bacterium that thrives in a broad range of ecological niches and can infect multiple hosts as diverse as plants, nematodes and mammals. In humans, it is an important opportunistic pathogen. This wide adaptability correlates with its broad genetic diversity. In this study, we used a deep-sequencing approach to explore the complement of small RNAs (sRNAs) in P. aeruginosa as the number of such regulatory molecules previously identified in this organism is relatively low, considering its genome size, phenotypic diversity and adaptability. We have performed a comparative analysis of PAO1 and PA14 strains which share the same host range but differ in virulence, PA14 being considerably more virulent in several model organisms. Altogether, we have identified more than 150 novel candidate sRNAs and validated a third of them by Northern blotting. Interestingly, a number of these novel sRNAs are strain-specific or showed strain-specific expression, strongly suggesting that they could be involved in determining specific phenotypic traits.
Environmental Microbiology | 2015
Silvia Ferrara; Sara Carloni; Roberta Fulco; Marilena Falcone; Raffaella Macchi; Giovanni Bertoni
The small RNA ErsA of Pseudomonas aeruginosa, transcribed from the same genomic context of the well-known Escherichia coli Spot 42, has been characterized. We show that, different from Spot 42, ErsA is under the transcriptional control of the envelope stress response, which is known to impact the pathogenesis of P. aeruginosa through the activity of the alternative sigma factor σ(22) . The transcriptional responsiveness of ErsA RNA also spans infection-relevant cues that P. aeruginosa can experience in mammalian hosts, such as limited iron availability, temperature shifts from environmental to body temperature and reduced oxygen conditions. Another difference between Spot 42 and ErsA is that ErsA does not seem to be involved in the regulation of carbon source catabolism. Instead, our results suggest that ErsA is linked to anabolic functions for the synthesis of exoproducts from sugar precursors. We show that ErsA directly operates in the negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several P. aeruginosa polysaccharides. Like ErsA, the activation of algC expression is also dependent on σ(22) . Altogether, our results suggest that ErsA and σ(22) combine in an incoherent feed-forward loop to fine-tune AlgC enzyme expression.
RNA | 2014
Francesco Delvillani; Barbara Sciandrone; Clelia Peano; Luca Petiti; Christian Berens; Christiane Georgi; Silvia Ferrara; Giovanni Bertoni; Maria Enrica Pasini; Gianni Dehò; Federica Briani
Modulation of mRNA translatability either by trans-acting factors (proteins or sRNAs) or by in cis-acting riboregulators is widespread in bacteria and controls relevant phenotypic traits. Unfortunately, global identification of post-transcriptionally regulated genes is complicated by poor structural and functional conservation of regulatory elements and by the limitations of proteomic approaches in protein quantification. We devised a genetic system for the identification of post-transcriptionally regulated genes and we applied this system to search for Pseudomonas aeruginosa RNA thermometers, a class of regulatory RNA that modulates gene translation in response to temperature changes. As P. aeruginosa is able to thrive in a broad range of environmental conditions, genes differentially expressed at 37 °C versus lower temperatures may be involved in infection and survival in the human host. We prepared a plasmid vector library with translational fusions of P. aeruginosa DNA fragments (PaDNA) inserted upstream of TIP2, a short peptide able to inactivate the Tet repressor (TetR) upon expression. The library was assayed in a streptomycin-resistant merodiploid rpsL(+)/rpsL31 Escherichia coli strain in which the dominant rpsL(+) allele, which confers streptomycin sensitivity, was repressed by TetR. PaDNA fragments conferring thermosensitive streptomycin resistance (i.e., expressing PaDNA-TIP2 fusions at 37°C, but not at 28°C) were sequenced. We identified four new putative thermosensors. Two of them were validated with conventional reporter systems in E. coli and P. aeruginosa. Interestingly, one regulates the expression of ptxS, a gene implicated in P. aeruginosa pathogenesis.
Applied Microbiology and Biotechnology | 2008
Patrizia Di Gennaro; Silvia Ferrara; Giuseppina Bestetti; Guido Sello; Dafne Solera; Enrica Galli; Francesco Renzi; Giovanni Bertoni
Novel expression systems for the development of whole-cell biocatalysts were generated. Their novelty consists both in the host, Pseudomonas putida, and in the ability to auto-induce the expression of genes of interest at the exhaustion of the carbon source used for the biomass growth. The auto-induction relies on new expression vectors developed in this study and based on the activator TouR from Pseudomonas sp. OX1, which was shown to mediate the activation of target promoters in an effector-independent growth-phase-dependent manner when the carbon source is exhausted at the onset of the stationary phase. We validated the suitability of these expression systems through the production of (S)-styrene oxide by the styrene monooxygenase from Pseudomonas fluorescens ST. The yields of epoxides produced by these biocatalysts in flask experiments showed to be as efficient as those currently available based on inducible Escherichia coli systems. In addition, a larger scale of biomass production showed no reduction of biocatalysis efficiency. Therefore, the systems developed in this study constitute a valid alternative to current expression systems to use in bioconversion processes.
Frontiers in Microbiology | 2018
Marilena Falcone; Silvia Ferrara; Elio Rossi; Helle Krogh Johansen; Søren Molin; Giovanni Bertoni
The small RNA ErsA of Pseudomonas aeruginosa was previously suggested to be involved in biofilm formation via negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several polysaccharides. In this study, we show that a knock-out ersA mutant strain forms a flat and uniform biofilm, not characterized by mushroom-multicellular structures typical of a mature biofilm. Conversely, the knock-out mutant strain showed enhanced swarming and twitching motilities. To assess the influence of ErsA on the P. aeruginosa transcriptome, we performed RNA-seq experiments comparing the knock-out mutant with the wild-type. More than 160 genes were found differentially expressed in the knock-out mutant. Parts of these genes, important for biofilm formation and motility regulation, are known to belong also to the AmrZ transcriptional regulator regulon. Here, we show that ErsA binds in vitro and positively regulates amrZ mRNA at post-transcriptional level in vivo suggesting an interesting contribution of the ErsA-amrZ mRNA interaction in biofilm development at several regulatory levels.
PLOS ONE | 2017
Silvia Ferrara; Marilena Falcone; Raffaella Macchi; Alessandra Bragonzi; Daniela Girelli; Lisa Cariani; Cristina Cigana; Giovanni Bertoni
Small non-coding RNAs (sRNAs) are post-transcriptional regulators of gene expression that have been recognized as key contributors to bacterial virulence and pathogenic mechanisms. In this study, we characterized the sRNA PesA of the opportunistic human pathogen Pseudomonas aeruginosa. We show that PesA, which is transcribed within the pathogenicity island PAPI-1 of P. aeruginosa strain PA14, contributes to P. aeruginosa PA14 virulence. In fact, pesA gene deletion resulted in a less pathogenic strain, showing higher survival of cystic fibrosis human bronchial epithelial cells after infection. Moreover, we show that PesA influences positively the expression of pyocin S3 whose genetic locus comprises two structural genes, pyoS3A and pyoS3I, encoding the killing S3A and the immunity S3I proteins, respectively. Interestingly, the deletion of pesA gene results in increased sensitivity to UV irradiation and to the fluoroquinolone antibiotic ciprofloxacin. The degree of UV sensitivity displayed by the PA14 strain lacking PesA is comparable to that of a strain deleted for pyoS3A-I. These results suggest an involvement of pyocin S3 in DNA damage repair and a regulatory role of PesA on this function.
Frontiers in Molecular Neuroscience | 2018
Raffaella Morini; Silvia Ferrara; Fabio Perrucci; Stefania Zambetti; Silvia Pelucchi; Elena Marcello; Fabrizio Gardoni; Flavia Antonucci; Michela Matteoli; Elisabetta Menna
Actin-based remodeling underlines spine morphogenesis and plasticity and is crucially involved in the processes that constantly reshape the circuitry of the adult brain in response to external stimuli, leading to learning and memory formation and supporting cognitive functions. Hence spine morphology and synaptic strength are tightly linked and indeed abnormalities in spine number and morphology have been described in a number of neurological disorders such as autism spectrum disorders (ASDs), schizophrenia and intellectual disabilities. We have recently demonstrated that the actin regulating protein, Epidermal growth factor receptor pathway substrate 8 (Eps8), is essential for spine growth and long term potentiation. Indeed, mice lacking Eps8 display immature filopodia-like spines, which are unable to undergo potentiation, and are impaired in cognitive functions. Furthermore, reduced levels of Eps8 have been found in the brain of a cohort of patients affected by ASD compared to controls. Here we investigated whether the lack of Eps8, which is also part of the N-methyl-d-aspartate (NMDA) receptor complex, affects the functional maturation of the postsynaptic compartment. Our results demonstrate that Eps8 knock out mice (Eps8 KO) neurons display altered synaptic expression and subunit composition of NMDA receptors (i.e., increased GluN2B-, decreased GluN2A-containing receptors) and impaired GluN2B to GluN2A subunit shift. Indeed Eps8 KO neurons display increased content of GluN2B containing NMDA receptors both at the synaptic and extrasynaptic level. Furthermore, Eps8 KO neurons display an increased content of extra-synaptic GluN2B-containing receptors, suggesting that also the synaptic targeting of NMDA receptors is affected by the lack of Eps8. These data demonstrate that, besides regulation of spine morphogenesis, Eps8 also regulates the synaptic balance of NMDA receptors subunits GluN2A and GluN2B.
EBioMedicine | 2016
Marco Emanuele; Alessandro Esposito; Serena Camerini; Flavia Antonucci; Silvia Ferrara; Silvia Seghezza; Tiziano Catelani; Marco Crescenzi; Roberto Marotta; Claudio Canale; Michela Matteoli; Elisabetta Menna; Evelina Chieregatti
Environmental Microbiology | 2017
Sara Carloni; Raffaella Macchi; Sara Sattin; Silvia Ferrara; Giovanni Bertoni
Biochemical and Biophysical Research Communications | 2016
Davide Vecchietti; Silvia Ferrara; Ruggero Rusmini; Raffaella Macchi; Mario Milani; Giovanni Bertoni