Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Ferrati is active.

Publication


Featured researches published by Silvia Ferrati.


Small | 2010

Logic-Embedded Vectors for Intracellular Partitioning, Endosomal Escape, and Exocytosis of Nanoparticles

Rita E. Serda; Aaron Mack; Anne L. van de Ven; Silvia Ferrati; Kenneth Dunner; Biana Godin; Ciro Chiappini; Matthew Landry; Louis Brousseau; Xuewu Liu; Andrew J. Bean; Mauro Ferrari

A new generation of nanocarriers, logic-embedded vectors (LEVs), is endowed with the ability to localize components at multiple intracellular sites, thus creating an opportunity for synergistic control of redundant or dual-hit pathways. LEV encoding elements include size, shape, charge, and surface chemistry. In this study, LEVs consist of porous silicon nanocarriers, programmed for cellular uptake and trafficking along the endosomal pathway, and surface-tailored iron oxide nanoparticles, programmed for endosomal sorting and partitioning of particles into unique cellular locations. In the presence of persistent endosomal localization of silicon nanocarriers, amine-functionalized nanoparticles are sorted into multiple vesicular bodies that form novel membrane-bound compartments compatible with cellular secretion, while chitosan-coated nanoparticles escape from endosomes and enter the cytosol. Encapsulation within the porous silicon matrix protects these nanoparticle surface-tailored properties, and enhances endosomal escape of chitosan-coated nanoparticles. Thus, LEVs provide a mechanism for shielded transport of nanoparticles to the lesion, cellular manipulation at multiple levels, and a means for targeting both within and between cells.


Nanoscale | 2010

Intracellular trafficking of silicon particles and logic-embedded vectors.

Silvia Ferrati; Aaron Mack; Ciro Chiappini; Xuewu Liu; Andrew J. Bean; Mauro Ferrari; Rita E. Serda

Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 microm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.


Cancer Letters | 2013

Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment.

Elvin Blanco; Takafumi Sangai; Angela Hsiao; Silvia Ferrati; Litao Bai; Xuewu Liu; Funda Meric-Bernstam; Mauro Ferrari

Adequate drug delivery to tumors is hindered by barriers such as degradation and non-specific distribution. Nested incorporation of drug-containing nanoparticles within mesoporous silicon particles (MSVs), carriers rationally designed to enhance tumor transport, was hypothesized to result in pronounced and sustained antitumor efficacy. Paclitaxel (PTX)-containing poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) polymer micelles were favorably loaded within MSVs, after which drug release was significantly delayed. Antitumor efficacy analyses in mice bearing MDA-MB-468 breast tumors demonstrated significant tumor growth suppression following a single administration. Results highlight effective chemotherapeutic shuttling and site-specific controlled release afforded by MSVs, potentially translating towards improvements in patient outcomes and morbidity.


Journal of Controlled Release | 2013

Leveraging nanochannels for universal, zero-order drug delivery in vivo

Silvia Ferrati; Daniel Fine; Junping You; Enrica De Rosa; Lee Hudson; Erika Zabre; Sharath Hosali; Li Zhang; Catherine Hickman; Shyam S. Bansal; Andrea M. Cordero-Reyes; Thomas Geninatti; Juliana Sih; Randy Goodall; Ganesh S. Palapattu; Malgorzata Kloc; Rafik M. Ghobrial; Mauro Ferrari; Alessandro Grattoni

Drug delivery is essential to achieve effective therapy. Herein we report on the only implantable nanochannel membrane with geometrically defined channels as small as 2.5 nm that achieves constant drug delivery in vivo. Nanochannels passively control the release of molecules by physico-electrostatic confinement, thereby leading to constant drug diffusion. We utilize a novel design algorithm to select the optimal nanochannel size for each therapeutic agent. Using nanochannels as small as 3.6 and 20 nm, we achieve sustained and constant plasma levels of leuprolide, interferon α-2b, letrozole, Y-27632, octreotide, and human growth hormone, all delivered at clinically-relevant doses. The device was demonstrated in dogs, rats, and mice and was capable of sustaining target doses for up to 70 days. To provide evidence of therapeutic efficacy, we successfully combined nanochannel delivery with a RhoA pathway inhibitor to prevent chronic rejection of cardiac allografts in a rat model. Our results provide evidence that the nanochannel platform has the potential to dramatically improve long-term therapies for chronic conditions.


Advanced Healthcare Materials | 2014

Sustained Zero-Order Release of Intact Ultra-Stable Drug-Loaded Liposomes from an Implantable Nanochannel Delivery System

Christian Celia; Silvia Ferrati; Shyam S. Bansal; Anne L. van de Ven; Barbara Ruozi; Erika Zabre; Sharath Hosali; Donatella Paolino; Maria Grazia Sarpietro; Daniel Fine; Massimo Fresta; Mauro Ferrari; Alessandro Grattoni

Metronomic chemotherapy supports the idea that long-term, sustained, constant administration of chemotherapeutics, currently not achievable, could be effective against numerous cancers. Particularly appealing are liposomal formulations, used to solubilize hydrophobic therapeutics and minimize side effects, while extending drug circulation time and enabling passive targeting. As liposome alone cannot survive in circulation beyond 48 h, sustaining their constant plasma level for many days is a challenge. To address this, we develop, as a proof of concept, an implantable nanochannel delivery system and ultra-stable PEGylated lapatinib-loaded liposomes, and we demonstrate the release of intact vesicles for over 18 d. Further, we investigate intravasation kinetics of subcutaneously delivered liposomes and verify their biological activity post nanochannel release on BT474 breast cancer cells. The key innovation of this work is the combination of two nanotechnologies to exploit the synergistic effect of liposomes, demonstrated as passive-targeting vectors and nanofluidics to maintain therapeutic constant plasma levels. In principle, this approach could maximize efficacy of metronomic treatments.


Lab on a Chip | 2013

Characterization of a nanogland for the autotransplantation of human pancreatic islets

Omaima Sabek; Silvia Ferrati; Daniel Fraga; Juliana Sih; Erika Zabre; Daniel Fine; Mauro Ferrari; A. Osama Gaber; Alessandro Grattoni

Despite the clinical success of pancreatic islet transplantation, graft function is frequently lost over time due to islet dispersion, lack of neovascularization, and loss of physiological architecture. To address these problems, islet encapsulation strategies including scaffolds and devices have been developed, which produced encouraging results in preclinical models. However, islet loss from such architectures could represent a significant limitation to clinical use. Here, we developed and characterized a novel islet encapsulation silicon device, the NanoGland, to overcome islet loss, while providing a physiological-like environment for long-term islet viability and revascularization. NanoGlands, microfabricated with a channel size ranging from 3.6 nm to 60 μm, were mathematically modeled to predict the kinetics of the response of encapsulated islets to glucose stimuli, based on different channel sizes, and to rationally select membranes for further testing. The model was validated in vitro using static and perifusion testing, during which insulin secretion and functionality were demonstrated for over 30-days. In vitro testing also showed 70-83% enhanced islet retention as compared to porous scaffolds, here simulated through a 200 μm channel membrane. Finally, evidence of in vivo viability of human islets subcutaneously transplanted within NanoGlands was shown in mice for over 120 days. In this context, mouse endothelial cell infiltration suggesting neovascularization from the host were identified in the retrieved grafts. The NanoGland represents a novel, promising approach for the autotransplantation of human islets.


Aaps Journal | 2017

Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes

Javier O. Morales; Kristin Fathe; Ashlee D. Brunaugh; Silvia Ferrati; Song Li; Miguel Montenegro-Nicolini; Zeynab Mousavikhamene; Jason T. McConville; Mark R. Prausnitz; Hugh D. C. Smyth

Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the gastrointestinal tract, each has its own strengths and weaknesses that may be optimal for specific classes of compounds. Buccal and sublingual delivery enable rapid drug uptake through a relatively permeable barrier but are limited by small epithelial surface area, stratified epithelia, and the practical complexities of maintaining a drug delivery system in the mouth. Pulmonary delivery accesses the highly permeable and large surface area of the alveolar epithelium but must overcome the complexities of safe and effective delivery to the alveoli deep in the lung. Transdermal delivery offers convenient access to the body for extended-release delivery via the skin surface but requires the use of novel devices and formulations to overcome the skin’s formidable stratum corneum barrier. New technologies and strategies advanced to overcome these challenges are reviewed, and critical views in future developments of each route are given.


Journal of Micromechanics and Microengineering | 2009

Analysis of a nanochanneled membrane structure through convective gas flow

Alessandro Grattoni; Enrica De Rosa; Silvia Ferrati; Zongxing Wang; Anna Gianesini; Xuewu Liu; Fazle Hussain; Randy Goodall; Mauro Ferrari

Micro- and nano-fluidic devices are under development for a variety of applications including bio-molecular separation, drug delivery, biosensing and cell transplantation. Regulatory approval for the commercialization of these products requires the ability to fabricate a large number of these devices with high reproducibility and precision. Though traditional microscopy and particle rejection characterization techniques provide extremely useful measurements of nano-features, they are expensive and inadequate for quality control purposes. In this study, an agile and non-destructive selection method is presented which combines a predictive theoretical model with experimental analysis of convective nitrogen flow to detect structural defects in complex drug delivery membranes (nDS) combining both micro- and nanochanneled features. The mathematical model developed bridges the fluid dynamics between the micro- and nano-scales. An experimental analysis of gas flow was performed on a total of 250 membranes representing five different channel size configurations. The accuracy and reliability of this test in detecting major and minor defects of various kinds were verified by comparing the experimental results with the theoretical prediction.


Advanced Healthcare Materials | 2015

Delivering enhanced testosterone replacement therapy through nanochannels.

Silvia Ferrati; Eugenia Nicolov; Shyam S. Bansal; Erika Zabre; Thomas Geninatti; Arturas Ziemys; Lee Hudson; Mauro Ferrari; Randal Goodall; Mohit Khera; Ganesh S. Palapattu; Alessandro Grattoni

Primary or secondary hypogonadism results in a range of signs and symptoms that compromise quality of life and requires life-long testosterone replacement therapy. In this study, an implantable nanochannel system is investigated as an alternative delivery strategy for the long-term sustained and constant release of testosterone. In vitro release tests are performed using a dissolution set up, with testosterone and testosterone:2-hydroxypropyl-β-cyclodextrin (TES:HPCD) 1:1 and 1:2 molar ratio complexes release from the implantable nanochannel system and quantify by HPLC. 1:2 TES:HPCD complex stably achieve 10-15 times higher testosterone solubility with 25-30 times higher in vitro release. Bioactivity of delivered testosterone is verified by LNCaP/LUC cell luminescence. In vivo evaluation of testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels by liquid chromatography mass spectrometry (LC/MS) and multiplex assay is performed in castrated Sprague-Dawley rats over 30 d. Animals are treated with the nanochannel implants or degradable testosterone pellets. The 1:2 TES:HPCD nanochannel implant exhibits sustained and clinically relevant in vivo release kinetics and attains physiologically stable plasma levels of testosterone, LH, and FSH. In conclusion, it is demonstrated that by providing long-term steady release 1:2 TES:HPCD nanochannel implants may represent a major breakthrough for the treatment of male hypogonadism.


Small | 2012

Inter-endothelial Transport of Microvectors using Cellular Shuttles and Tunneling Nanotubes

Silvia Ferrati; Sabeel Shamsudeen; Huw D. Summers; Paul Rees; James V. A. Abbey; Jeff Schmulen; Xuewu Liu; Stephen T. C. Wong; Andrew J. Bean; Mauro Ferrari; Rita E. Serda

New insights into the intra- and intercellular trafficking of drug delivery particles challenges the dogma of particles as static intracellular depots for sustained drug release. Recent discoveries in the cell-to-cell transfer of cellular constituents, including proteins, organelles, and microparticles sheds light on new ways to propagate signals and therapeutics. While beneficial for the dispersion of therapeutics at sites of pathologies, propagation of biological entities advancing disease states is less desirable. Mechanisms are presented for the transfer of porous silicon microparticles between cells. Direct cell-to-cell transfer of microparticles by means of membrane adhesion or using membrane extensions known as tunneling nanotubes is presented. Cellular relays, or shuttle cells, are also shown to mediate the transfer of microparticles between cells. These microparticle-transfer events appear to be stimulated by environmental cues, introducing a new paradigm of environmentally triggered propagation of cellular signals and rapid dispersion of particle-delivered therapeutics. The opportunity to use microparticles to study cellular transfer events and biological triggers that induce these events may aid in the discovery of therapeutics that limit the spread of disease.

Collaboration


Dive into the Silvia Ferrati's collaboration.

Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugh D. C. Smyth

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rita E. Serda

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Erika Zabre

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Xuewu Liu

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Shyam S. Bansal

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Bean

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Fine

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge