Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia G. Acinas is active.

Publication


Featured researches published by Silvia G. Acinas.


Journal of Bacteriology | 2004

Divergence and Redundancy of 16S rRNA Sequences in Genomes with Multiple rrn Operons

Silvia G. Acinas; Luisa A. Marcelino; Vanja Klepac-Ceraj; Martin F. Polz

The level of sequence heterogeneity among rrn operons within genomes determines the accuracy of diversity estimation by 16S rRNA-based methods. Furthermore, the occurrence of widespread horizontal gene transfer (HGT) between distantly related rrn operons casts doubt on reconstructions of phylogenetic relationships. For this study, patterns of distribution of rrn copy numbers, interoperonic divergence, and redundancy of 16S rRNA sequences were evaluated. Bacterial genomes display up to 15 operons and operon numbers up to 7 are commonly found, but approximately 40% of the organisms analyzed have either one or two operons. Among the Archaea, a single operon appears to dominate and the highest number of operons is five. About 40% of sequences among 380 operons in 76 bacterial genomes with multiple operons were identical to at least one other 16S rRNA sequence in the same genome, and in 38% of the genomes all 16S rRNAs were invariant. For Archaea, the number of identical operons was only 25%, but only five genomes with 21 operons are currently available. These considerations suggest an upper bound of roughly threefold overestimation of bacterial diversity resulting from cloning and sequencing of 16S rRNA genes from the environment; however, the inclusion of genomes with a single rrn operon may lower this correction factor to approximately 2.5. Divergence among operons appears to be small overall for both Bacteria and Archaea, with the vast majority of 16S rRNA sequences showing <1% nucleotide differences. Only five genomes with operons with a higher level of nucleotide divergence were detected, and Thermoanaerobacter tengcongensis exhibited the highest level of divergence (11.6%) noted to date. Overall, four of the five extreme cases of operon differences occurred among thermophilic bacteria, suggesting a much higher incidence of HGT in these bacteria than in other groups.


Science | 2015

Eukaryotic plankton diversity in the sunlit ocean

Colomban de Vargas; Stéphane Audic; Nicolas Henry; Johan Decelle; Frédéric Mahé; Ramiro Logares; Enrique Lara; Cédric Berney; Noan Le Bescot; Ian Probert; Margaux Carmichael; Julie Poulain; Sarah Romac; Sébastien Colin; Jean-Marc Aury; Lucie Bittner; Samuel Chaffron; Micah Dunthorn; Stefan Engelen; Olga Flegontova; Lionel Guidi; Aleš Horák; Olivier Jaillon; Gipsi Lima-Mendez; Julius Lukeš; Shruti Malviya; Raphaël Morard; Matthieu Mulot; Eleonora Scalco; Raffaele Siano

Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.


Science | 2015

Structure and function of the global ocean microbiome

Shinichi Sunagawa; Luis Pedro Coelho; Samuel Chaffron; Jens Roat Kultima; Karine Labadie; Guillem Salazar; Bardya Djahanschiri; Georg Zeller; Daniel R. Mende; Adriana Alberti; Francisco M. Cornejo-Castillo; Paul Igor Costea; Corinne Cruaud; Francesco d'Ovidio; Stefan Engelen; Isabel Ferrera; Josep M. Gasol; Lionel Guidi; Falk Hildebrand; Florian Kokoszka; Cyrille Lepoivre; Gipsi Lima-Mendez; Julie Poulain; Bonnie T. Poulos; Marta Royo-Llonch; Hugo Sarmento; Sara Vieira-Silva; Céline Dimier; Marc Picheral; Sarah Searson

Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems.


Applied and Environmental Microbiology | 2005

PCR-Induced Sequence Artifacts and Bias: Insights from Comparison of Two 16S rRNA Clone Libraries Constructed from the Same Sample

Silvia G. Acinas; Ramahi Sarma-Rupavtarm; Vanja Klepac-Ceraj; Martin F. Polz

ABSTRACT The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.


Nature | 2004

Fine-scale phylogenetic architecture of a complex bacterial community

Silvia G. Acinas; Vanja Klepac-Ceraj; Dana E. Hunt; Chanathip Pharino; Ivica Ceraj; Daniel L. Distel; Martin F. Polz

Although molecular data have revealed the vast scope of microbial diversity, two fundamental questions remain unanswered even for well-defined natural microbial communities: how many bacterial types co-exist, and are such types naturally organized into phylogenetically discrete units of potential ecological significance? It has been argued that without such information, the environmental function, population biology and biogeography of microorganisms cannot be rigorously explored. Here we address these questions by comprehensive sampling of two large 16S ribosomal RNA clone libraries from a coastal bacterioplankton community. We show that compensation for artefacts generated by common library construction techniques reveals fine-scale patterns of community composition. At least 516 ribotypes (unique rRNA sequences) were detected in the sample and, by statistical extrapolation, at least 1,633 co-existing ribotypes in the sampled population. More than 50% of the ribotypes fall into discrete clusters containing less than 1% sequence divergence. This pattern cannot be accounted for by interoperon variation, indicating a large predominance of closely related taxa in this community. We propose that such microdiverse clusters arise by selective sweeps and persist because competitive mechanisms are too weak to purge diversity from within them.


Science | 2015

Determinants of community structure in the global plankton interactome

Gipsi Lima-Mendez; Karoline Faust; Nicolas Henry; Johan Decelle; Sébastien Colin; Fabrizio Carcillo; Samuel Chaffron; J. Cesar Ignacio-Espinosa; Simon Roux; Flora Vincent; Lucie Bittner; Youssef Darzi; Jun Wang; Stéphane Audic; Léo Berline; Gianluca Bontempi; Ana María Cabello; Laurent Coppola; Francisco M. Cornejo-Castillo; Francesco d'Ovidio; Luc De Meester; Isabel Ferrera; Marie-José Garet-Delmas; Lionel Guidi; Elena Lara; Stephane Pesant; Marta Royo-Llonch; Guillem Salazar; Pablo Sánchez; Marta Sebastián

Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated network-generated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models.


The ISME Journal | 2013

Ecology of marine Bacteroidetes: a comparative genomics approach

Beatriz Fernández-Gómez; Michael Richter; Margarete Schüler; Jarone Pinhassi; Silvia G. Acinas; José M. González; Carlos Pedrós-Alió

Bacteroidetes are commonly assumed to be specialized in degrading high molecular weight (HMW) compounds and to have a preference for growth attached to particles, surfaces or algal cells. The first sequenced genomes of marine Bacteroidetes seemed to confirm this assumption. Many more genomes have been sequenced recently. Here, a comparative analysis of marine Bacteroidetes genomes revealed a life strategy different from those of other important phyla of marine bacterioplankton such as Cyanobacteria and Proteobacteria. Bacteroidetes have many adaptations to grow attached to particles, have the capacity to degrade polymers, including a large number of peptidases, glycoside hydrolases (GHs), glycosyl transferases, adhesion proteins, as well as the genes for gliding motility. Several of the polymer degradation genes are located in close association with genes for TonB-dependent receptors and transducers, suggesting an integrated regulation of adhesion and degradation of polymers. This confirmed the role of this abundant group of marine bacteria as degraders of particulate matter. Marine Bacteroidetes had a significantly larger number of proteases than GHs, while non-marine Bacteroidetes had equal numbers of both. Proteorhodopsin containing Bacteroidetes shared two characteristics: small genome size and a higher number of genes involved in CO2 fixation per Mb. The latter may be important in order to survive when floating freely in the illuminated, but nutrient-poor, ocean surface.


Science | 2015

Patterns and ecological drivers of ocean viral communities

Jennifer R. Brum; J. Cesar Ignacio-Espinoza; Simon Roux; Guilhem Doulcier; Silvia G. Acinas; Adriana Alberti; Samuel Chaffron; Corinne Cruaud; Colomban de Vargas; Josep M. Gasol; Gabriel Gorsky; Ann C. Gregory; Lionel Guidi; Pascal Hingamp; Daniele Iudicone; Fabrice Not; Hiroyuki Ogata; Stephane Pesant; Bonnie T. Poulos; Sarah M. Schwenck; Sabrina Speich; Céline Dimier; Stefanie Kandels-Lewis; Marc Picheral; Sarah Searson; Tara Oceans Coordinators; Peer Bork; Chris Bowler; Shinichi Sunagawa; Patrick Wincker

Viruses influence ecosystems by modulating microbial population size, diversity, metabolic outputs, and gene flow. Here, we use quantitative double-stranded DNA (dsDNA) viral-fraction metagenomes (viromes) and whole viral community morphological data sets from 43 Tara Oceans expedition samples to assess viral community patterns and structure in the upper ocean. Protein cluster cataloging defined pelagic upper-ocean viral community pan and core gene sets and suggested that this sequence space is well-sampled. Analyses of viral protein clusters, populations, and morphology revealed biogeographic patterns whereby viral communities were passively transported on oceanic currents and locally structured by environmental conditions that affect host community structure. Together, these investigations establish a global ocean dsDNA viromic data set with analyses supporting the seed-bank hypothesis to explain how oceanic viral communities maintain high local diversity.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean

Brandon K. Swan; Ben Tupper; Alexander Sczyrba; Federico M. Lauro; Manuel Martínez-García; José M. González; Haiwei Luo; Jody J. Wright; Zachary C. Landry; Niels W. Hanson; Brian Thompson; Nicole J. Poulton; Patrick Schwientek; Silvia G. Acinas; Stephen J. Giovannoni; Mary Ann Moran; Steven J. Hallam; Ricardo Cavicchioli; Tanja Woyke; Ramunas Stepanauskas

Planktonic bacteria dominate surface ocean biomass and influence global biogeochemical processes, but remain poorly characterized owing to difficulties in cultivation. Using large-scale single cell genomics, we obtained insight into the genome content and biogeography of many bacterial lineages inhabiting the surface ocean. We found that, compared with existing cultures, natural bacterioplankton have smaller genomes, fewer gene duplications, and are depleted in guanine and cytosine, noncoding nucleotides, and genes encoding transcription, signal transduction, and noncytoplasmic proteins. These findings provide strong evidence that genome streamlining and oligotrophy are prevalent features among diverse, free-living bacterioplankton, whereas existing laboratory cultures consist primarily of copiotrophs. The apparent ubiquity of metabolic specialization and mixotrophy, as predicted from single cell genomes, also may contribute to the difficulty in bacterioplankton cultivation. Using metagenome fragment recruitment against single cell genomes, we show that the global distribution of surface ocean bacterioplankton correlates with temperature and latitude and is not limited by dispersal at the time scales required for nucleotide substitution to exceed the current operational definition of bacterial species. Single cell genomes with highly similar small subunit rRNA gene sequences exhibited significant genomic and biogeographic variability, highlighting challenges in the interpretation of individual gene surveys and metagenome assemblies in environmental microbiology. Our study demonstrates the utility of single cell genomics for gaining an improved understanding of the composition and dynamics of natural microbial assemblages.


Environmental Microbiology | 2014

Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities

Ramiro Logares; Shinichi Sunagawa; Guillem Salazar; Francisco M. Cornejo-Castillo; Isabel Ferrera; Hugo Sarmento; Pascal Hingamp; Hiroyuki Ogata; Colomban de Vargas; Gipsi Lima-Mendez; Jeroen Raes; Julie Poulain; Olivier Jaillon; Patrick Wincker; Stefanie Kandels-Lewis; Eric Karsenti; Peer Bork; Silvia G. Acinas

Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.

Collaboration


Dive into the Silvia G. Acinas's collaboration.

Top Co-Authors

Avatar

Josep M. Gasol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillem Salazar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ramon Massana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dolors Vaqué

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos M. Duarte

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Elena Lara

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Carlos Pedrós-Alió

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge