Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Galardi is active.

Publication


Featured researches published by Silvia Galardi.


Journal of Biological Chemistry | 2007

miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1

Silvia Galardi; Neri Mercatelli; Ezio Giorda; Simone Massalini; Giovanni Vanni Frajese; Silvia Anna Ciafrè; Maria Giulia Farace

MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional level and are deeply involved in the pathogenesis of several types of cancers. Here we show that miR-221 and miR-222, encoded in tandem on chromosome X, are overexpressed in the PC3 cellular model of aggressive prostate carcinoma, as compared with LNCaP and 22Rv1 cell line models of slowly growing carcinomas. In all cell lines tested, we show an inverse relationship between the expression of miR-221 and miR-222 and the cell cycle inhibitor p27Kip1. We recognize two target sites for the microRNAs in the 3′ untranslated region of p27 mRNA, and we show that miR-221/222 ectopic overexpression directly results in p27 down-regulation in LNCaP cells. In those cells, we demonstrate that the ectopic overexpression of miR-221/222 strongly affects their growth potential by inducing a G1 to S shift in the cell cycle and is sufficient to induce a powerful enhancement of their colony-forming potential in soft agar. Consistently, miR-221 and miR-222 knock-down through antisense LNA oligonucleotides increases p27Kip1 in PC3 cells and strongly reduces their clonogenicity in vitro. Our results suggest that miR-221/222 can be regarded as a new family of oncogenes, directly targeting the tumor suppressor p27Kip1, and that their overexpression might be one of the factors contributing to the oncogenesis and progression of prostate carcinoma through p27Kip1 down-regulation.


Nucleic Acids Research | 2011

NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells.

Silvia Galardi; Neri Mercatelli; Maria Giulia Farace; Silvia Anna Ciafrè

MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription.


RNA Biology | 2013

microRNAs and RNA-binding proteins: A complex network of interactions and reciprocal regulations in cancer

Silvia Anna Ciafrè; Silvia Galardi

In the last decade, an ever-growing number of connections between microRNAs (miRNAs) and RNA-binding proteins (RBPs) have uncovered a new level of complexity of gene expression regulation in cancer. In this review, we examine several aspects of the functional interactions between miRNAs and RBPs in cancer models. We will provide examples of reciprocal regulation: miRNAs regulating the expression of RBPs, or the converse, where an RNA-binding protein specifically regulates the expression of a specific miRNA, or when an RBP can exert a widespread effect on miRNAs via the modulation of a key protein for miRNA production or function. Moreover, we will focus on the ever-growing number of functional interactions that have been discovered in the last few years: RBPs that were shown to cooperate with microRNAs in the downregulation of shared target mRNAs or, on the contrary, that inhibit microRNA action, thus resulting in a protection of the specific target mRNAs. We surely need to obtain a deeper comprehension of such intricate networks to have a chance of understanding and, thus, fighting cancer.


RNA Biology | 2008

A-to-I RNA editing and cancer From pathology to basic science

Angela Gallo; Silvia Galardi

In eukaryotes mRNA transcripts are extensively processed by different post-transcriptional events such as alternative splicing and RNA editing in order to generate many different mRNAs from the same gene, increasing the transcriptome and then the proteome. The most frequent RNA editing mechanism in mammals involves the conversion of specific adenosines into inosines by the ADAR family of enzymes. This editing event can change both the sequence and the secondary structures of RNA molecules, with important consequences on both the final proteins and regulatory RNAs. Alteration in RNA editing has been connected to numerous human pathologies and recent studies have demonstrated its importance in tumor progression.


Genome Biology | 2015

Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma

Sara Tomaselli; Federica Galeano; Shahar Alon; Susanna Raho; Silvia Galardi; Vinicia Assunta Polito; Carlo Presutti; Sara Vincenti; Eli Eisenberg; Franco Locatelli; Angela Gallo

BackgroundADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known.ResultsBy integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration.ConclusionsOur findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.


EMBO Reports | 2016

Resetting cancer stem cell regulatory nodes upon MYC inhibition

Silvia Galardi; Mauro Savino; Fiorella Scagnoli; Serena Pellegatta; Federica Pisati; Federico Zambelli; Barbara Illi; Daniela Annibali; Sara Beji; Elisa Orecchini; Maria Adele Alberelli; Clara Apicella; Rosaria Anna Fontanella; Alessandro Michienzi; Gaetano Finocchiaro; Maria Giulia Farace; Giulio Pavesi; Silvia Anna Ciafrè; Sergio Nasi

MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc—a MYC‐derived polypeptide interfering with MYC activity—taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC. This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells.


Nucleic Acids Research | 2017

ADAR1 restricts LINE-1 retrotransposition

Elisa Orecchini; Margherita Doria; Ambra Antonioni; Silvia Galardi; Silvia Anna Ciafrè; Loredana Frassinelli; Carmine Mancone; Claudia Montaldo; Marco Tripodi; Alessandro Michienzi

Adenosine deaminases acting on RNA (ADARs) are involved in RNA editing that converts adenosines to inosines in double-stranded RNAs. ADAR1 was demonstrated to be functional on different viruses exerting either antiviral or proviral effects. Concerning HIV-1, several studies showed that ADAR1 favors viral replication. The aim of this study was to investigate the composition of the ADAR1 ribonucleoprotein complex during HIV-1 expression. By using a dual-tag affinity purification procedure in cells expressing HIV-1 followed by mass spectrometry analysis, we identified 14 non-ribosomal ADAR1-interacting proteins, most of which are novel. A significant fraction of these proteins were previously demonstrated to be associated to the Long INterspersed Element 1 (LINE1 or L1) ribonucleoparticles and to regulate the life cycle of L1 retrotransposons that continuously re-enter host-genome. Hence, we investigated the function of ADAR1 in the regulation of L1 activity. By using different cell-culture based retrotransposition assays in HeLa cells, we demonstrated a novel function of ADAR1 as suppressor of L1 retrotransposition. Apparently, this inhibitory mechanism does not occur through ADAR1 editing activity. Furthermore, we showed that ADAR1 binds the basal L1 RNP complex. Overall, these data support the role of ADAR1 as regulator of L1 life cycle.


RNA Biology | 2014

The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222

Elisa Orecchini; Margherita Doria; Alessandro Michienzi; Erica Giuliani; Lia Vassena; Silvia Anna Ciafrè; Maria Giulia Farace; Silvia Galardi

Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.


Scientific Reports | 2016

CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27(Kip1) mRNA translation

Silvia Galardi; Massimo Petretich; Guillaume Pinna; Silvia D’Amico; Fabrizio Loreni; Alessandro Michienzi; Irina Groisman; Silvia Anna Ciafrè

The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3′ untranslated regions (3′UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27Kip1 by specifically targeting its 3′UTR, and competes with miR-221/222 binding at an overlapping site in the 3′UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27Kip1 3′UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27Kip1 mRNA. This leads to higher levels of p27Kip1 in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma.


PLOS ONE | 2014

HIV-1 Infection Causes a Down-Regulation of Genes Involved in Ribosome Biogenesis

Claudia L. Kleinman; Margherita Doria; Elisa Orecchini; Erica Giuliani; Silvia Galardi; Nicolas De Jay; Alessandro Michienzi

HIV-1 preferentially infects CD4+ T cells, causing fundamental changes that eventually lead to the release of new viral particles and cell death. To investigate in detail alterations in the transcriptome of the CD4+ T cells upon viral infection, we sequenced polyadenylated RNA isolated from Jurkat cells infected or not with HIV-1. We found a marked global alteration of gene expression following infection, with an overall trend toward induction of genes, indicating widespread modification of the host biology. Annotation and pathway analysis of the most deregulated genes showed that viral infection produces a down-regulation of genes associated with the nucleolus, in particular those implicated in regulating the different steps of ribosome biogenesis, such as ribosomal RNA (rRNA) transcription, pre-rRNA processing, and ribosome maturation. The impact of HIV-1 infection on genes involved in ribosome biogenesis was further validated in primary CD4+ T cells. Moreover, we provided evidence by Northern Blot experiments, that host pre-rRNA processing in Jurkat cells might be perturbed during HIV-1 infection, thus strengthening the hypothesis of a crosstalk between nucleolar functions and viral pathogenesis.

Collaboration


Dive into the Silvia Galardi's collaboration.

Top Co-Authors

Avatar

Silvia Anna Ciafrè

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Alessandro Michienzi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Maria Giulia Farace

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Elisa Orecchini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Margherita Doria

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Neri Mercatelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Annunziato Mangiola

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Erica Giuliani

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Barbara Fazi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Daria Sicari

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge