Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia García-Cobos is active.

Publication


Featured researches published by Silvia García-Cobos.


Journal of Clinical Microbiology | 2006

Spread of Escherichia coli Strains with High-Level Cefotaxime and Ceftazidime Resistance between the Community, Long-Term Care Facilities, and Hospital Institutions

Jesús Oteo; Carmen Navarro; Emilia Cercenado; Alberto Delgado-Iribarren; Isabel Wilhelmi; Beatriz Orden; Carmen Martinez Garcia; Silvia Migueláñez; María Pérez-Vázquez; Silvia García-Cobos; Belén Aracil; Verónica Bautista; José Campos

ABSTRACT A total of 151 Escherichia coli strains resistant to cefotaxime and ceftazidime were isolated during a prospective surveillance study. These strains were characterized by clinical, microbiological, and molecular analyses and were distributed into four clusters of 103, 11, 6, and 5 isolates, along with 25 unrelated strains. The principal cluster was isolated from urine, wound, blood, and other samples in three hospitals, eight nursing homes, and a community healthcare center. This cluster was associated with both nosocomial (65%) and community-acquired (35%) infections. Most strains were resistant to ciprofloxacin, gentamicin, tobramycin, cefepime, amoxicillin-clavulanic acid, and trimethoprim-sulfamethoxazole but were susceptible to imipenem. All isolates from the four clusters expressed the extended-spectrum β-lactamase (ESBL) CTX-M-15. This enzyme was also present in 8 (30.8%) of the 26 unrelated isolates. The other ESBLs, CTX-M-14 and CTX-M-32, were detected in five and seven cases, respectively, but they were detected in individual E. coli isolates only. In three clusters, blaCTX-M-15 alleles were linked to an ISEcp1-like element, while in eight strains of cluster II an IS26 element preceded the blaCTX-M-15 allele. An additional pool of resistance genes included tetA, drfA14 or dfrA17, sul1 or sul2, aac(6′)Ib, and aac(3)IIb. All except one of the 27 isolates tested for genetic virulence markers harbored the same three virulence genes: iutA and fyuA (siderophores), and traT (serum survival factor). Epidemic or occasional isolates of cefotaxime- and ceftazidime-resistant E. coli can spread between distinct health facilities including hospitals, community health centers, and long-term care centers.


Antimicrobial Agents and Chemotherapy | 2007

Ampicillin-Resistant Non-β-Lactamase-Producing Haemophilus influenzae in Spain: Recent Emergence of Clonal Isolates with Increased Resistance to Cefotaxime and Cefixime

Silvia García-Cobos; José Campos; Edurne Lázaro; Federico Román; Emilia Cercenado; César García-Rey; María Pérez-Vázquez; Jesús Oteo; Francisco J. de Abajo

ABSTRACT The sequence of the ftsI gene encoding the transpeptidase domain of penicillin-binding protein 3 (PBP 3) was determined for 354 nonconsecutive Haemophilus influenzae isolates from Spain; 17.8% of them were ampicillin susceptible, 56% were β-lactamase nonproducing ampicillin resistant (BLNAR), 15.8% were β-lactamase producers and ampicillin resistant, and 10.4% displayed both resistance mechanisms. The ftsI gene sequences had 28 different mutation patterns and amino acid substitutions at 23 positions. Some 93.2% of the BLNAR strains had amino acid substitutions at the Lys-Thr-Gly (KTG) motif, the two most common being Asn526 to Lys (83.9%) and Arg517 to His (9.3%). Amino acid substitutions at positions 377, 385, and 389, which conferred cefotaxime and cefixime MICs 10 to 60 times higher than those of susceptible strains, were found for the first time in Europe. In 72 isolates for which the repressor acrR gene of the AcrAB efflux pump was sequenced, numerous amino acid substitutions were found. Eight isolates with ampicillin MICs of 0.25 to 2 μg/ml showed changes that predicted the early termination of the acrR reading frame. Pulsed-field gel electrophoresis analysis demonstrated that most BLNAR strains were genetically diverse, although clonal dissemination was detected in a group of isolates presenting with increased resistance to cefotaxime and cefixime. Background antibiotic use at the community level revealed a marked trend toward increased amoxicillin-clavulanic acid consumption. BLNAR H. influenzae strains have arisen by vertical and horizontal spread and have evolved to adapt rapidly to the increased selective pressures posed by the use of oral penicillins and cephalosporins.


Journal of Biotechnology | 2017

Application of next generation sequencing in clinical microbiology and infection prevention

Ruud H. Deurenberg; Erik Bathoorn; Monika A. Chlebowicz; Natacha Couto; Mithila Ferdous; Silvia García-Cobos; A.M.D. Kooistra-Smid; Erwin C. Raangs; Sigrid Rosema; Alida Veloo; Kai Zhou; Alexander W. Friedrich; John W. A. Rossen

Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements.


Antimicrobial Agents and Chemotherapy | 2008

Antibiotic Resistance in Haemophilus influenzae Decreased, except for β-Lactamase-Negative Amoxicillin-Resistant Isolates, in Parallel with Community Antibiotic Consumption in Spain from 1997 to 2007

Silvia García-Cobos; José Campos; Emilia Cercenado; Federico Román; Edurne Lázaro; María Pérez-Vázquez; Francisco J. de Abajo; Jesús Oteo

ABSTRACT The susceptibility to 14 antimicrobial agents and the mechanisms of aminopenicillin resistance were studied in 197 clinical isolates of Haemophilus influenzae—109 isolated in 2007 (study group) and 88 isolated in 1997 (control group). Community antibiotic consumption trends were also examined. H. influenzae strains were consecutively isolated from the same geographic area, mostly from respiratory specimens from children and adults. Overall, amoxicillin resistance decreased by 8.4% (from 38.6 to 30.2%). β-Lactamase production decreased by 15.6% (from 33 to 17.4%, P = 0.01), but amoxicillin resistance without β-lactamase production increased by 7.1% (from 5.7 to 12.8%). All β-lactamase-positive isolates were TEM-1, but five different promoter regions were identified, with Pdel being the most prevalent in both years, and Prpt being associated with the highest amoxicillin resistance. A new promoter consisting of a double repeat of 54 bp was detected. Community consumption of most antibiotics decreased, as did the geometric means of their MICs, but amoxicillin-clavulanic acid and azithromycin consumption increased by ca. 60%. For amoxicillin-clavulanic acid, a 14.2% increase in the population with an MIC of 2 to 4 μg/ml (P = 0.02) was observed; for azithromycin, a 21.2% increase in the population with an MIC of 2 to 8 μg/ml (P = 0.0005) was observed. In both periods, the most common gBLNAR (i.e., H. influenzae isolates with mutations in the ftsI gene as previously defined) patterns were IIc and IIb. Community consumption of trimethoprim-sulfamethoxazole decreased by 54%, while resistance decreased from 50 to 34.9% (P = 0.04). Antibiotic resistance in H. influenzae decreased in Spain from 1997 to 2007, but surveillance should be maintained since new forms of resistances may be developing.


Emerging Infectious Diseases | 2008

Increased amoxicillin-clavulanic acid resistance in Escherichia coli blood isolates, Spain.

Jesús Oteo; José Campos; Edurne Lázaro; Oscar Cuevas; Silvia García-Cobos; María Pérez-Vázquez; F. J. de Abajo

To determine the evolution and trends of amoxicillin–clavulanic acid resistance among Escherichia coli isolates in Spain, we tested 9,090 blood isolates from 42 Spanish hospitals and compared resistance with trends in outpatient consumption. These isolates were collected by Spanish hospitals that participated in the European Antimicrobial Resistance Surveillance System network from April 2003 through December 2006.


Antimicrobial Agents and Chemotherapy | 2008

Low β-Lactamase-Negative Ampicillin-Resistant Haemophilus influenzae Strains Are Best Detected by Testing Amoxicillin Susceptibility by the Broth Microdilution Method

Silvia García-Cobos; José Campos; Federico Román; Cristina Carrera; María Pérez-Vázquez; Belén Aracil; Jesús Oteo

ABSTRACT Ampicillin resistance in Haemophilus influenzae due to alterations in penicillin-binding proteins (β-lactamase negative ampicillin resistant [BLNAR]) is acquiring increasing clinical and epidemiological importance. BLNAR strains with low ampicillin MICs (0.5 to 4 μg/ml) represent the majority of this population in Europe and the United States, but separating them from susceptible isolates is challenging. To investigate the best method to identify low-BLNAR strains, we studied the antibiotic susceptibilities of 94 clinical isolates of H. influenzae by microdilution, Etest, and disk diffusion: 25 had no resistance mechanisms (gBLNAS), 34 had mutations in the ftsI gene only (gBLNAR), 20 were β-lactamase producers only (gBLPAR), and 15 showed β-lactamase production and mutations in the ftsI gene (gBLPACR). By current CLSI breakpoints, most gBLNAR isolates were ampicillin susceptible by microdilution (76.5%) or by Etest (88.2%). Most gBLNAR strains (79.4%) were nonsusceptible to amoxicillin (the most widely used community antibiotic in the United States and Europe) when tested by microdilution. By Etest, 15% of β-lactamase-positive isolates were nonresistant to ampicillin or amoxicillin. The poorest agreement between Etest and microdilution results was for the gBLPAR isolates (25% for ampicillin, 15% for amoxicillin, and 10% for cefaclor). Low-strength disks of ampicillin and amoxicillin-clavulanic acid poorly identified low-BLNAR isolates and are not recommended as a screening method. We suggest new amoxicillin breakpoints for BLNAR isolates as follows: susceptible, MIC ≤ 0.5 μg/ml (no resistance mechanisms; pharmacokinetic/pharmacodynamic [PK/PD] data favorable); intermediate, MICs = 1 to 2 μg/ml (resistance mechanisms present but PK/PD data favorable), and resistant, MICs ≥ 4 μg/ml (resistance mechanisms present and PK/PD data unfavorable).


Antimicrobial Agents and Chemotherapy | 2010

Haemophilus influenzae Clinical Isolates with Plasmid pB1000 Bearing blaROB-1: Fitness Cost and Interspecies Dissemination

Alvaro San Millan; Silvia García-Cobos; Jose Antonio Escudero; Laura Hidalgo; Belen Gutierrez; Laura Carrilero; José Campos; Bruno Gonzalez-Zorn

ABSTRACT Plasmid pB1000 is a mobilizable replicon bearing the blaROB-1 β-lactamase gene that we have recently described in Haemophilus parasuis and Pasteurella multocida animal isolates. Here we report the presence of pB1000 and a derivative plasmid, pB1000′, in four Haemophilus influenzae clinical isolates of human origin. Pulsed-field gel electrophoresis showed unrelated patterns in all strains, indicating that the existence of pB1000 in H. influenzae isolates is not the consequence of clonal dissemination. The replicon can be transferred both by transformation and by conjugation into H. influenzae, giving rise to recipients resistant to ampicillin and cefaclor (MICs, ≥64 μg/ml). Stability experiments showed that pB1000 is stable in H. influenzae without antimicrobial pressure for at least 60 generations. Competition experiments between isogenic H. influenzae strains with and without pB1000 revealed a competitive disadvantage of 9% per 10 generations for the transformant versus the recipient. The complete nucleotide sequences of nine pB1000 plasmids from human and animal isolates, as well as the epidemiological data, suggest that animal isolates belonging to the Pasteurellaceae act as an antimicrobial resistance reservoir for H. influenzae. Further, since P. multocida is the only member of this family that can colonize both humans and animals, we propose that P. multocida is the vehicle for the transport of pB1000 between animal- and human-adapted members of the Pasteurellaceae.


Antimicrobial Agents and Chemotherapy | 2007

Fluoroquinolone Resistance in Haemophilus influenzae Is Associated with Hypermutability

María Pérez-Vázquez; Federico Román; Silvia García-Cobos; José Campos

ABSTRACT Forty-three percent (12/28) of ciprofloxacin (CIP)-nonsusceptible respiratory isolates of Haemophilus influenzae were hypermutable, compared with 8.5% (3/35) in the CIP-susceptible control group (P = 0.002). CIP-nonsusceptible mutants were obtained with hypermutable strains only; these mutants developed three resistance mechanisms in a step-by-step process: target modifications, loss of a porin protein, and increased efflux.


Journal of Antimicrobial Chemotherapy | 2014

Frequent carriage of resistance mechanisms to β-lactams and biofilm formation in Haemophilus influenzae causing treatment failure and recurrent otitis media in young children

Silvia García-Cobos; Miriam Moscoso; Félix Pumarola; Margarita Arroyo; Noelia Lara; María Pérez-Vázquez; Belén Aracil; Jesús Oteo; Ernesto García; José Campos

OBJECTIVES Non-typeable Haemophilus influenzae are a major cause of acute otitis media (AOM), including chronic and recurrent otitis in young children. The objective of this study was to determine whether non-typeable H. influenzae isolates causing these infections produce biofilms and carry resistance mechanisms to β-lactams. METHODS A collection of 48 H. influenzae isolates was obtained by tympanocentesis or from otorrhoea samples from individual patients <3 years of age and diagnosed with recurrent or treatment failure AOM. Each isolate was surveyed for the presence of blaTEM genes, amino acid substitutions in the transpeptidase domain of penicillin-binding protein 3 (PBP3) and biofilm formation in microtitre plates. RESULTS In 43 of the 48 isolates (89.6%), at least one of the three tested conditions was identified: biofilm formation (83.3%) and resistance mechanisms to β-lactams (33.3%), modifications in the transpeptidase domain of PBP3 being the most prevalent (22.9%), followed by β-lactamase production (10.4%). Additionally, 13 (27.1%) isolates had two or more of these three traits. In relation to biofilm formation, those isolates with an amoxicillin MIC ≤ 0.5 mg/L had higher optical density values than isolates with an amoxicillin MIC ≥ 1 mg/L (Mann-Whitney U-test, P=0.048). CONCLUSIONS These findings suggest that the successful treatment of non-typeable H. influenzae causing chronic and recurrent AOM in young children may be compromised by the high biofilm-forming capacity of the isolates and the presence of β-lactam resistance mechanisms, particularly PBP3 mutations.


PLOS ONE | 2015

Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones

Silvia García-Cobos; Robin Köck; Alexander Mellmann; Julia Frenzel; Alexander W. Friedrich; John W. A. Rossen

The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans.

Collaboration


Dive into the Silvia García-Cobos's collaboration.

Top Co-Authors

Avatar

José Campos

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Oteo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Alexander W. Friedrich

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

John W. A. Rossen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Belén Aracil

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Federico Román

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruud H. Deurenberg

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Emilia Cercenado

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge