Silvia Ginés
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Ginés.
BMC Neuroscience | 2005
Jin Wang; Silvia Ginés; Marcy E. MacDonald; James F. Gusella
BackgroundHuntingtons disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotype-phenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expression of mutant huntingtin in a striatal cell line from the HdhQ111/Q111knock-in mouse.ResultsWe screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1–171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 μM, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111striatal cells.ConclusionsAt least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.
Brain | 2011
Cristina Blázquez; Anna Chiarlone; Onintza Sagredo; Tania Aguado; M. Ruth Pazos; Eva Resel; Javier Palazuelos; Boris Julien; María Salazar; Christine Börner; Cristina Benito; Carolina Carrasco; María Diez-Zaera; Paola Paoletti; Miguel Díaz-Hernández; Carolina Ruiz; Michael Sendtner; José J. Lucas; Justo García de Yébenes; Giovanni Marsicano; Krisztina Monory; Beat Lutz; Julián Romero; Jordi Alberch; Silvia Ginés; Jürgen Kraus; Javier Fernández-Ruiz; Ismael Galve-Roperh; Manuel Guzmán
Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntingtons disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntingtons disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntingtons disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntingtons disease, and suggest that activation of these receptors in patients with Huntingtons disease may attenuate disease progression.
Neuropsychopharmacology | 2000
Rafael Franco; Sergi Ferré; L. F. Agnati; Maria Torvinen; Silvia Ginés; Joëlle Hillion; Vicent Casadó; Pierre-Marie Lledo; Michele Zoli; Carmen Lluis; Kjell Fuxe
Evidence has been obtained for adenosine/dopamine interactions in the central nervous system. There exists an anatomical basis for the existence of functional interactions between adenosine A1R and dopamine D1R and between adenosine A2A and dopamine D2 receptors in the same neurons. Selective A1R agonists affect negatively the high affinity binding of D1 receptors. Activation of A2A receptors leads to a decrease in receptor affinity for dopamine agonists acting on D2 receptors, specially of the high-affinity state. These interactions have been reproduced in cell lines and found to be of functional significance. Adenosine/dopamine interactions at the behavioral level probably reflect those found at the level of dopamine receptor binding and transduction. All these findings suggest receptor subtype-specific interactions between adenosine and dopamine receptors that may be achieved by molecular interactions (e.g., receptor heterodimerization). At the molecular level adenosine receptors can serve as a model for homomeric and heteromeric protein–protein interactions. A1R forms homodimers in membranes and also form high-order molecular structures containing also heterotrimeric G-proteins and adenosine deaminase. The occurrence of clustering also clearly suggests that G-protein- coupled receptors form high-order molecular structures, in which multimers of the receptors and probably other interacting proteins form functional complexes. In view of the occurrence of homodimers of adenosine and of dopamine receptors it is speculated that heterodimers between these receptors belonging to two different families of G-protein-coupled receceptors can be formed. Evidence that A1/D1 can form heterodimers in cotransfected cells and in primary cultures of neurons has in fact been obtained. In the central nervous system direct and indirect receptor–receptor interactions via adaptor proteins participate in neurotransmission and neuromodulation and, for example, in the establishment of high neural functions such as learning and memory.
Journal of Biological Chemistry | 2003
Silvia Ginés; Elena Ivanova; Ihn Sik Seong; Carlos A. Saura; Marcy E. MacDonald
Huntingtons disease features the loss of striatal neurons that stems from a disease process that is initiated by mutant huntingtin. Early events in the disease cascade, which predate overt pathology in Hdh CAG knock-in mouse striatum, implicate enhanced N-methyl-d-aspartate (NMDA) receptor activation, with excitotoxity caused by aberrant Ca2+ influx. Here we demonstrate in precise genetic Huntingtons disease mouse and striatal cell models that these early phenotypes are associated with activation of the Akt pro-survival signaling pathway. Elevated levels of activated Ser(P)473-Akt are detected in extracts of HdhQ111/Q111 striatum and cultured mutant STHdhQ111/Q111 striatal cells, compared with their wild type counterparts. Akt activation in mutant striatal cells is associated with increased Akt signaling via phosphorylation of GSK3β at Ser9. Consequent decreased turnover of transcription co-factor β-catenin leads to increased levels of β-catenin target gene cyclin D1. Akt activation is phosphatidylinositol 3-kinase dependent, as demonstrated by increased levels of Ser(P)241-PDK1 kinase and decreased Ser(P)380-PTEN phosphatase. Moreover, Akt activation can be normally stimulated by treatment with insulin growth factor-1 and blocked by treatment with the phosphatidylinositol 3-kinase inhibitor LY294002. However, in contrast to wild type cells, Akt activation in mutant striatal cells can be blocked by the addition of the NMDA receptor antagonist MK-801. Akt activation in mutant striatal cells is Ca2+-dependent, because treatment with EGTA reduces levels of Ser(P)473-Akt. Thus, consistent with excitotoxicity early in the disease process, activation of the Akt pro-survival pathway in mutant knock-in striatal cells predates overt pathology and reflects mitochondrial dysfunction and enhanced NMDA receptor signaling.
European Journal of Neuroscience | 2006
Silvia Ginés; Miquel Bosch; Sonia Marco; Núria Gavaldà; Miguel Díaz-Hernández; José J. Lucas; Josep M. Canals; Jordi Alberch
Deficits of neurotrophic support caused by reduced levels of brain‐derived neurotrophic factor (BDNF) have been implicated in the selective vulnerability of striatal neurones in Huntingtons disease (HD). Therapeutic strategies based on BDNF administration have been proposed to slow or prevent the disease progression. However, the effectiveness of BDNF may depend on the proper expression of its receptor TrkB. In this study, we analysed the expression of TrkB in several HD models and in postmortem HD brains. We found a specific reduction of TrkB receptors in transgenic exon‐1 and full‐length knock‐in HD mouse models and also in the motor cortex and caudate nucleus of HD brains. Our findings also demonstrated that continuous expression of mutant huntingtin is required to down‐regulate TrkB levels. This was shown by findings in an inducible HD mouse model showing rescue of TrkB by turning off mutant huntingtin expression. Interestingly, the length of the polyglutamine tract in huntingtin appears to modulate the reduction of TrkB. Finally, to analyse the effect of BDNF in TrkB we compared TrkB expression in mutant huntingtin R6/1 and double mutant (R6/1 : BDNF+/–) mice. Similar TrkB expression was found in both transgenic mice suggesting that reduced TrkB is not a direct consequence of decreased BDNF. Therefore, taken together our findings identify TrkB as an additional component that potentially might contribute to the altered neurotrophic support in HD.
Neurobiology of Disease | 2006
Alice Chen-Plotkin; Ghazaleh Sadri-Vakili; George J. Yohrling; Melissa W. Braveman; Caroline L. Benn; Kelly E. Glajch; Derek P. DiRocco; Laurie A. Farrell; Dimitri Krainc; Silvia Ginés; Marcy E. MacDonald; Jang Ho J Cha
Huntingtons disease (HD) is a neurodegenerative disease caused by expansion of a polyglutamine tract within the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis; recent evidence suggests a defect in Sp1-mediated transcription. We used chromatin immunoprecipitation (ChIP) assays followed by real-time PCR to quantify the association of Sp1 with individual genes. We find that, despite normal protein levels and normal to increased overall nuclear binding activity, Sp1 has decreased binding to specific promoters of susceptible genes in transgenic HD mouse brain, in striatal HD cells, and in human HD brain. Genes whose mRNA levels are decreased in HD have abnormal Sp1-DNA binding, whereas genes with unchanged mRNA levels have normal levels of Sp1 association. Moreover, the altered binding seen with Sp1 is not found with another transcription factor, NF-Y. These findings suggest that mutant huntingtin dissociates Sp1 from target promoters, inhibiting transcription of specific genes.
The Journal of Neuroscience | 2008
Paola Paoletti; Ingrid Vila; Maria Rifé; Jose M. Lizcano; Jordi Alberch; Silvia Ginés
Altered glutamatergic and dopaminergic signaling has been proposed as contributing to the specific striatal cell death observed in Huntingtons disease (HD). However, the precise mechanisms by which mutant huntingtin sensitize striatal cells to dopamine and glutamate inputs remain unclear. Here, we demonstrate in knock-in HD striatal cells that mutant huntingtin enhances dopamine-mediated striatal cell death via dopamine D1 receptors. Moreover, we show that NMDA receptors specifically potentiate the vulnerability of mutant huntingtin striatal cells to dopamine toxicity as pretreatment with NMDA increased D1R-induced cell death in mutant but not wild-type cells. As potential underlying mechanism of increased striatal vulnerability, we identified aberrant cyclin-dependent kinase 5 (Cdk5) activation. We demonstrate that enhanced Cdk5 phosphorylation and increased calpain-mediated conversion of the Cdk5 activator p35 into p25 may account for the deregulation of Cdk5 associated to dopamine and glutamate receptor activation in knock-in HD striatal cells. Moreover, supporting a detrimental role of Cdk5 in striatal cell death, neuronal loss can be widely prevented by roscovitine, a potent Cdk5 inhibitor. Significantly, reduced Cdk5 expression together with enhanced Cdk5 phosphorylation and p25 accumulation also occurs in the striatum of mutant HdhQ111 mice and HD human brain suggesting the relevance of deregulated Cdk5 pathway in HD pathology. These findings provide new insights into the molecular mechanisms underlying the selective vulnerability of striatal cells in HD and identify p25/Cdk5 as an important mediator of dopamine and glutamate neurotoxicity associated to HD.
Human Molecular Genetics | 2012
Albert Giralt; Mar Puigdellívol; Olga Carretón; Paola Paoletti; Jorge Valero; Arnaldo Parra-Damas; Carlos A. Saura; Jordi Alberch; Silvia Ginés
Huntingtons disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the huntingtin (htt) gene. Although HD is classically considered a motor disorder, there is now considerable evidence that early cognitive deficits appear in patients before the onset of motor disturbances. Here we demonstrate early impairment of long-term spatial and recognition memory in heterozygous HD knock-in mutant mice (Hdh(Q7/Q111)), a genetically accurate HD mouse model. Cognitive deficits are associated with reduced hippocampal expression of CREB-binding protein (CBP) and diminished levels of histone H3 acetylation. In agreement with reduced CBP, the expression of CREB/CBP target genes related to memory, such c-fos, Arc and Nr4a2, was significantly reduced in the hippocampus of Hdh(Q7/Q111) mice compared with wild-type mice. Finally, and consistent with a role of CBP in cognitive impairment in Hdh(Q7/Q111) mice, administration of the histone deacetylase inhibitor trichostatin A rescues recognition memory deficits and transcription of selective CREB/CBP target genes in Hdh(Q7/Q111) mice. These findings demonstrate an important role for CBP in cognitive dysfunction in HD and suggest the use of histone deacetylase inhibitors as a novel therapeutic strategy for the treatment of memory deficits in this disease.
The Journal of Neuroscience | 2006
Daniel del Toro; Josep M. Canals; Silvia Ginés; Masami Kojima; Gustavo Egea; Jordi Alberch
Brain-derived neurotrophic factor (BDNF) polymorphism is associated with the pathophysiology of several neurodegenerative disorders, including Huntingtons disease. In view of these data and the involvement of huntingtin in intracellular trafficking, we examined the intracellular transport and release of Val66Val BDNF (Val-BDNF) and Val66Met BDNF (Met-BDNF) in transfected striatal knock-in cells expressing wild-type or mutant full-length huntingtin. Colocalization studies with specific markers for endoplasmic reticulum showed no differences between the Val-BDNF and Met-BDNF and were not modified by mutant huntingtin. However, post-Golgi trafficking was altered by mutant huntingtin dependent on the BDNF form. Thus, fluorescence recovery after photobleaching (FRAP) and inverse FRAP analysis showed retention of Met-BDNF in the Golgi apparatus with respect to Val-BDNF in wild-type cells. Strikingly, mutant huntingtin diminished post-Golgi trafficking of Val-BDNF, whereas Met-BDNF was not modified. Accordingly, a reduction in the number of transport vesicles was only observed in mutant huntingtin cells transfected with Val-BDNF but not Met-BDNF. Moreover, mutant huntingtin severely affected the KCl-evoked release of Val-BDNF, although it had little effect on Met-BDNF regulated release. The constitutive release of Val-BDNF or Met-BDNF in mutant cells was only slightly reduced. Interestingly, mutant huntingtin only perturbed post-Golgi trafficking of proteins that follow the regulated secretory pathway (epidermal growth factor receptor or atrial natriuretic factor), whereas it did not change those that follow the constitutive pathway (p75NTR). We conclude that mutant huntingtin differently affects intracellular transport and release of Val-BDNF and Met-BDNF. In addition, our findings reveal a new role for huntingtin in the regulation of the post-Golgi trafficking of the regulated secretory pathway.
Neuromolecular Medicine | 2003
Marcy E. MacDonald; Silvia Ginés; James F. Gusella; Vanessa C. Wheeler
Huntington’s disease (HD) research is aimed at understanding the root cause of the disorder, for the thrill of uncovering new biology, and for the serious purpose of finding effective therapeutic agents. Molecular genetics has revealed the disease trigger, an inherited unstable CAG expansion in a novel 4p16.3 gene (HD), that lengthens a polyglutamine segment in huntingtin. Now studies with HD patients and model systems that are genetic HD replicas are homing in on the trigger mechanism and the first formative steps that cast HD as a distinct clinical entity. At the same time, assays at the biochemical, cellular, and whole organism levels are starting to yield potential disease modifying genes and candidate drugs. These can be prioritized by testing in a panel of genetic and phenotypic HD mouse models to yield analytical tools for dissecting the early and late stages of the disease process and to maximize the chance of success in trials with HD patients.