Silvia González-Ramos
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia González-Ramos.
Biochemical Journal | 2014
María Fernández-Velasco; Silvia González-Ramos; Lisardo Boscá
Emerging evidence points to the involvement of specialized cells of the immune system as key drivers in the pathophysiology of cardiovascular diseases. Monocytes are an essential cell component of the innate immune system that rapidly mobilize from the bone marrow to wounded tissues where they differentiate into macrophages or dendritic cells and trigger an immune response. In the healthy heart a limited, but near-constant, number of resident macrophages have been detected; however, this number significantly increases during cardiac damage. Shortly after initial cardiac injury, e.g. myocardial infarction, a large number of macrophages harbouring a pro-inflammatory profile (M1) are rapidly recruited to the cardiac tissue, where they contribute to cardiac remodelling. After this initial period, resolution takes place in the wound, and the infiltrated macrophages display a predominant deactivation/pro-resolution profile (M2), promoting cardiac repair by mediating pro-fibrotic responses. In the present review we focus on the role of the immune cells, particularly in the monocyte/macrophage population, in the progression of the major cardiac pathologies myocardial infarction and atherosclerosis.
Biochemical Journal | 2017
Almudena Val-Blasco; Patricia Prieto-Chinchilla; Silvia González-Ramos; Gemma Benito; María Teresa Vallejo-Cremades; Ivette Pacheco; María Pilar González-Peramato; Noelia Agra; Verónica Terrón; Carmen Delgado; Lisardo Boscá; María Fernández-Velasco
Cardiac fibrosis and chronic inflammation are common complications in type 2 diabetes mellitus (T2D). Since nucleotide oligomerization-binding domain 1 (NOD1), an innate immune receptor, is involved in the pathogenesis of insulin resistance and diabetes outcomes, we sought to investigate its involvement in cardiac fibrosis. Here, we show that selective staining of cardiac fibroblasts from T2D (db/db;db) mice exhibits up-regulation and activation of the NOD1 pathway, resulting in enhanced NF-κB and TGF-β signalling. Activation of the TGF-β pathway in cardiac fibroblasts from db mice was prevented after inhibition of NF-κB with BAY-11-7082 (BAY). Moreover, fibrosis progression in db mice was also prevented by BAY treatment. Enhanced TGF-β signalling and cardiac fibrosis of db mice was dependent, at least in part, on the sequential activation of NOD1 and NF-κB since treatment of db mice with a selective NOD1 agonist induced activation of the TGF-β pathway, but co-administration of a NOD1 agonist plus BAY, or a NOD1 inhibitor prevented the NOD1-induced fibrosis. Therefore, NOD1 is involved in cardiac fibrosis associated with diabetes, and establishes a new mechanism for the development of heart fibrosis linked to T2D.
Journal of the American College of Cardiology | 2017
Almudena Val-Blasco; Maria J. Piedras; Gema Ruiz-Hurtado; Natalia Suarez; Patricia Prieto; Silvia González-Ramos; Nieves Gomez-Hurtado; Carmen Delgado; Laetitia Pereira; Gemma Benito; Carlos Zaragoza; Nieves Doménech; María G. Crespo-Leiro; Daniel Vasquez-Echeverri; Gabriel Núñez; Eduardo López-Collazo; Lisardo Boscá; María Fernández-Velasco
BACKGROUND Heart failure (HF) is a complex syndrome associated with a maladaptive innate immune system response that leads to deleterious cardiac remodeling. However, the underlying mechanisms of this syndrome are poorly understood. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a newly recognized innate immune sensor involved in cardiovascular diseases. OBJECTIVES This study evaluated the role of NOD1 in HF progression. METHODS NOD1 was examined in human failing myocardium and in a post-myocardial infarction (PMI) HF model evaluated in wild-type (wt-PMI) and Nod1-/- mice (Nod1-/--PMI). RESULTS The NOD1 pathway was up-regulated in human and murine failing myocardia. Compared with wt-PMI, hearts from Nod1-/--PMI mice had better cardiac function and attenuated structural remodeling. Ameliorated cardiac function in Nod1-/--PMI mice was associated with prevention of Ca2+ dynamic impairment linked to HF, including smaller and longer intracellular Ca2+ concentration transients and a lesser sarcoplasmic reticulum Ca2+ load due to a down-regulation of the sarcoplasmic reticulum Ca2+-adenosine triphosphatase pump and by augmented levels of the Na+/Ca2+ exchanger. Increased diastolic Ca2+ release in wt-PMI cardiomyocytes was related to hyperphosphorylation of ryanodine receptors, which was blunted in Nod1-/--PMI cardiomyocytes. Pharmacological blockade of NOD1 also prevented Ca2+ mishandling in wt-PMI mice. Nod1-/--PMI mice showed significantly fewer ventricular arrhythmias and lower mortality after isoproterenol administration. These effects were associated with lower aberrant systolic Ca2+ release and with a prevention of the hyperphosphorylation of ryanodine receptors under isoproterenol administration in Nod1-/--PMI mice. CONCLUSIONS NOD1 modulated intracellular Ca2+ mishandling in HF, emerging as a new target for HF therapy.
The Journal of Nuclear Medicine | 2016
Parmanand Singh; Silvia González-Ramos; Marina Mojena; César Eduardo Rosales-Mendoza; Hamed Emami; Jeffrey Swanson; Alex Morss; Zahi A. Fayad; James H.F. Rudd; Jeffrey A. Gelfand; Marta Paz-García; Lisardo Boscá; Ahmed Tawakol
18F-FDG accumulates in glycolytically active tissues and is known to concentrate in tissues that are rich in activated macrophages. In this study, we tested the hypotheses that human granulocyte-macrophage colony-stimulating factor (GM-CSF), a clinically used cytokine, increases macrophage glycolysis and deoxyglucose uptake in vitro and acutely enhances 18F-FDG uptake within inflamed tissues such as atherosclerotic plaques in vivo. Methods: In vitro experiments were conducted on human macrophages whereby inflammatory activation and uptake of radiolabeled 2-deoxyglucose was assessed before and after GM-CSF exposure. In vivo studies were performed on mice and New Zealand White rabbits to assess the effect of GM-CSF on 18F-FDG uptake in normal versus inflamed arteries, using PET. Results: Incubation of human macrophages with GM-CSF resulted in increased glycolysis and increased 2-deoxyglucose uptake (P < 0.05). This effect was attenuated by neutralizing antibodies against tumor necrosis factor–α or after silencing or inhibition of 6-phosphofructo-2-kinase. In vivo, in mice and in rabbits, intravenous GM-CSF administration resulted in a 70% and 73% increase (P < 0.01 for both), respectively, in arterial 18F-FDG uptake in atherosclerotic animals but not in nonatherosclerotic controls. Histopathologic analysis demonstrated a significant correlation between in vivo 18F-FDG uptake and macrophage staining (R = 0.75, P < 0.01). Conclusion: GM-CSF substantially augments glycolytic flux in vitro (via a mechanism dependent on ubiquitous type 6-phosphofructo-2-kinase and tumor necrosis factor–α) and increases 18F-FDG uptake within inflamed atheroma in vivo. These findings demonstrate that GM-CSF can be used to enhance detection of inflammation. Further studies should explore the role of GM-CSF stimulation to enhance the detection of inflammatory foci in other disease states.
Redox biology | 2018
Marina Mojena; María Pimentel-Santillana; Adrián Povo-Retana; Victoria Fernández-García; Silvia González-Ramos; Alberto Tejedor; Daniel Rico; Ángela M. Valverde; Lisardo Boscá
Protein tyrosine phosphatase 1B (PTP1B) is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs) from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant.
Frontiers in Oncology | 2018
Marina Mojena; Adrián Povo-Retana; Silvia González-Ramos; Victoria Fernández-García; Javier Regadera; Arturo Zazpe; Inés Artaiz; Francisco Ledo; Lisardo Boscá
Melanomas are heterogeneous and aggressive tumors, and one of the worse in prognosis. Melanoma subtypes follow distinct pathways until terminal oncogenic transformation. Here, we have evaluated a series of molecules that exhibit potent cytotoxic effects over the murine and human melanoma cell lines B16F10 and MalMe-3M, respectively, both ex vivo and in animals carrying these melanoma cells. Ex vivo mechanistic studies on molecular targets involved in melanoma growth, migration and viability were evaluated in cultured cells treated with these drugs which exhibited potent proapoptotic and cytotoxic effects and reduced cell migration. These drugs altered the Wnt/β-catenin pathway, which is important for the oncogenic phenotype of melanoma cells. In in vivo experiments, male C57BL/6 or nude mice were injected with melanoma cells that rapidly expanded in these animals and, in some cases were able to form metastasis in lungs. Treatment with anti-tumor drugs derived from benzylamine and 2-thiophenemethylamine (F10503LO1 and related compounds) significantly attenuated tumor growth, impaired cell migration, and reduced the metastatic activity. Several protocols of administration were applied, all of them leading to significant reduction in the tumor size and enhanced animal survival. Tumor cells carrying a luciferase transgene allowed a time-dependent study on the progression of the tumor. Molecular analysis of the pathways modified by F10503LO1 and related compounds defined the main relevant targets for tumor regression: the activation of pro-apoptotic and anti-proliferative routes. These data might provide the proof-of-principle and rationale for its further clinical evaluation.
Frontiers in Pharmacology | 2017
Lucía Paniagua-Herranz; Juan C. Gil-Redondo; Mª José Queipo; Silvia González-Ramos; Lisardo Boscá; Raquel Pérez-Sen; Ma Teresa Miras-Portugal; Esmerilda G. Delicado
Prostaglandin E2 (PGE2) is an important bioactive lipid that accumulates after tissue damage or inflammation due to the rapid expression of cyclooxygenase 2. PGE2 activates specific G-protein coupled EP receptors and it mediates pro- or anti-inflammatory actions depending on the cell-context. Nucleotides can also be released in these situations and they even contribute to PGE2 production. We previously described the selective impairment of P2Y nucleotide signaling by PGE2 in macrophages and fibroblasts, an effect independent of prostaglandin receptors but that involved protein kinase C (PKC) and protein kinase D (PKD) activation. Considering that macrophages and fibroblasts influence inflammatory responses and tissue remodeling, a similar mechanism involving P2Y signaling could occur in astrocytes in response to neuroinflammation and brain repair. We analyzed here the modulation of cellular responses involving P2Y2/P2Y4 receptors by PGE2 in rat cerebellar astrocytes. We demonstrate that PGE2 inhibits intracellular calcium responses elicited by UTP in individual cells and that inhibiting this P2Y signaling impairs the astrocyte migration elicited by this nucleotide. Activation of EP3 receptors by PGE2 not only impairs the calcium responses but also, the extracellular regulated kinases (ERK) and Akt phosphorylation induced by UTP. However, PGE2 requires epidermal growth factor receptor (EGFR) transactivation in order to dampen P2Y signaling. In addition, these effects of PGE2 also occur in a pro-inflammatory context, as evident in astrocytes stimulated with bacterial lipopolysaccharide (LPS). While we continue to investigate the intracellular mechanisms responsible for the inhibition of UTP responses, the involvement of novel PKC and PKD in cerebellar astrocytes cannot be excluded, kinases that could promote the internalization of P2Y receptors in fibroblasts.
Biochemical Society Transactions | 2015
Lisardo Boscá; Silvia González-Ramos; Patricia Prieto; María Fernández-Velasco; Marina Mojena; Susana Alemany
Cardiovascular Research | 2015
Carmen Delgado; Gema Ruiz-Hurtado; Nieves Gomez-Hurtado; Silvia González-Ramos; Angélica Rueda; Gemma Benito; Patricia Prieto; Carlos Zaragoza; Esmerilda G. Delicado; Raquel Pérez-Sen; María Teresa Miras-Portugal; Gabriel Núñez; Lisardo Boscá; María Fernández-Velasco
Atherosclerosis | 2017
Silvia González-Ramos; Marta Paz-García; César Eduardo Rosales-Mendoza; Lisardo Boscá