Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia I. Cazorla is active.

Publication


Featured researches published by Silvia I. Cazorla.


Expert Review of Vaccines | 2009

Vaccination approaches against Trypanosoma cruzi infection

Silvia I. Cazorla; Fernanda M. Frank; Emilio L. Malchiodi

In natural infection, the survival of Trypanosoma cruzi, despite the complex immune response elicited including several humoral and cellular components of innate and acquired immunity, suggests that the immune system’s natural responses are inherently inadequate. Consequently, it is of paramount importance to find alternatives to direct the immune system before infection, and redirect it after infection, to obtain a prophylactic and therapeutic vaccine. Herein, we review the recent advances in vaccine research and the development of the major antigen candidates, including cruzipain, trans-sialidase, amastigote surface protein, paraflagellar rod protein, among others. In the last 5 years, experimental works have been conducted to analyze DNA delivery systems, including viruses and bacteria, as well as immunomodulators such as CpG–oligodeoxynucleotide, macrophage-activating lipopeptide from Mycoplasma fermentans, glycolipid α-galactosylceramide, granulocyte-macrophage colony-stimulating factor, IL-12 and other cytokines and chemokines. The review also covers articles that shed light on some mechanisms of innate and adaptive immunity against T. cruzi, which improved our knowledge and provided potentially useful tools to fight infection. A better understanding of the protective immune responses that can effectively arrest T. cruzi survival in the mammalian host is critical for the development of vaccines against Chagas disease.


International Journal of Antimicrobial Agents | 2011

Psilostachyin C: a natural compound with trypanocidal activity

Valeria P. Sülsen; Fernanda M. Frank; Silvia I. Cazorla; Patricia Barrera; Blanca Freixa; Roser Vila; Miguel A. Sosa; Emilio L. Malchiodi; Liliana Muschietti; Virginia S. Martino

In this study, the antiprotozoal activity of the sesquiterpene lactone psilostachyin C was investigated. This natural compound was isolated from Ambrosia scabra by bioassay-guided fractionation and was identified by spectroscopic techniques. Psilostachyin C exerted in vitro trypanocidal activity against Trypanosoma cruzi epimastigotes, trypomastigotes and amastigotes, with 50% inhibitory concentration (IC(50)) values of 0.6, 3.5 and 0.9 μg/mL, respectively, and displayed less cytotoxicity against mammalian cells, with a 50% cytotoxic concentration (CC(50)) of 87.5 μg/mL. Interestingly, this compound induced ultrastructural alterations, as seen by transmission electron microscopy, in which vacuolisation and a structural appearance resembling multivesicular bodies were observed even at a concentration as low as 0.2 μg/mL. In an in vivo assay, a significant reduction in the number of circulating parasites was found in T. cruzi-infected mice treated with psilostachyin C for 5 days compared with untreated mice (7.4 ± 1.2 × 10(5)parasites/mL vs. 12.8 ± 2.0 × 10(5)parasites/mL) at the peak of parasitaemia. According to these results, psilostachyin C may be considered a promising template for the design of novel trypanocidal agents. In addition, psilostachyin C inhibited the growth of Leishmania mexicana and Leishmania amazonensis promastigotes (IC(50)=1.2 μg/mL and 1.5 μg/mL, respectively).


The Journal of Infectious Diseases | 2010

Redirection of the Immune Response to the Functional Catalytic Domain of the Cystein Proteinase Cruzipain Improves Protective Immunity against Trypanosoma cruzi Infection

Silvia I. Cazorla; Fernanda M. Frank; Pablo D. Becker; María Arnaiz; Gerardo A. Mirkin; Ricardo S. Corral; Carlos A. Guzmán; Emilio L. Malchiodi

Despite the strong immune responses elicited after natural infection with Trypanosoma cruzi or vaccination against it, parasite survival suggests that these responses are insufficient or inherently inadequate. T. cruzi contains a major cystein proteinase, cruzipain, which has a catalytic N-terminal domain and a C-terminal extension. Immunizations that employed recombinant cruzipain or its N- and C-terminal domains allowed evaluation of the ability of cruzipain to circumvent responses against the catalytic domain. This phenomenon is not a property of the parasite but of cruzipain itself, because recombinant cruzipain triggers a response similar to that of cruzipain during natural or experimental infection. Cruzipain is not the only antigen with a highly immunogenic region of unknown function that somehow protects an essential domain for parasite survival. However, our studies show that this can be reverted by using the N-terminal domain as a tailored immunogen able to redirect host responses to provide enhanced protection.


PLOS Neglected Tropical Diseases | 2013

Natural Terpenoids from Ambrosia Species Are Active In Vitro and In Vivo against Human Pathogenic Trypanosomatids

Valeria P. Sülsen; Silvia I. Cazorla; Fernanda M. Frank; Laura C. Laurella; Liliana Muschietti; César A.N. Catalán; Virginia S. Martino; Emilio L. Malchiodi

Among the natural compounds, terpenoids play an important role in the drug discovery process for tropical diseases. The aim of the present work was to isolate antiprotozoal compounds from Ambrosia elatior and A. scabra. The sesquiterpene lactone (STL) cumanin was isolated from A. elatior whereas two other STLs, psilostachyin and cordilin, and one sterol glycoside, daucosterol, were isolated from A. scabra. Cumanin and cordilin were active against Trypanosoma cruzi epimastigotes showing 50% inhibition concentrations (IC50) values of 12 µM and 26 µM, respectively. Moreover, these compounds are active against bloodstrean trypomastigotes, regardless of the T. cruzi strain tested. Psilostachyin and cumanin were also active against amastigote forms with IC50 values of 21 µM and 8 µM, respectively. By contrast, daucosterol showed moderate activity on epimastigotes and trypomastigotes and was inactive against amastigote forms. We also found that cumanin and psilostachyin exhibited an additive effect in their trypanocidal activity when these two drugs were tested together. Cumanin has leishmanicidal activity with growth inhibition values greater than 80% at a concentration of 5 µg/ml (19 µM), against both L. braziliensis and L. amazonensis promastigotes. In an in vivo model of T. cruzi infection, cumanin was more active than benznidazole, producing an 8-fold reduction in parasitemia levels during the acute phase of the infection compared with the control group, and more importantly, a reduction in mortality with 66% of the animals surviving, in comparison with 100% mortality in the control group. Cumanin also showed nontoxic effects at the doses assayed in vivo, as determined using markers of hepatic damage.


The Journal of Infectious Diseases | 2015

Oral Multicomponent DNA Vaccine Delivered by Attenuated Salmonella Elicited Immunoprotection against American Trypanosomiasis

Silvia I. Cazorla; Marina N. Matos; Natacha Cerny; Carolina Ramirez; Andrés Sánchez Alberti; Augusto E. Bivona; Celina Morales; Carlos A. Guzmán; Emilio L. Malchiodi

We have reported that attenuated Salmonella (S) carrying plasmids encoding the cysteine protease cruzipain (Cz) protects against Trypanosoma cruzi infection. Here, we determined whether immunoprotection could be improved by the oral coadministration of 3 Salmonella carrying the plasmids that encode the antigens Cz, Tc52, and Tc24. SCz+STc52+STc24-immunized mice presented an increased antibody response against each antigen compared with those in the single antigen-immunized groups, as well as higher trypomastigotes antibody-mediated lyses and cell invasion inhibition compared with controls. SCz+STc52+STc24-immunized and -challenged mice rendered lower parasitemia. Weight loss after infection was detected in all mice except those in the SCz+STc52+STc24 group. Moreover, cardiomyopathy-associated enzyme activity was significantly lower in SCz+STc24+STc52-immunized mice compared with controls. Few or no abnormalities were found in muscle tissues of SCz+STc24+STc52-immunized mice, whereas controls presented with inflammatory foci, necrosis, and amastigote nests. We conclude that a multicomponent approach that targets several invasion and metabolic mechanisms improves protection compared with single-component vaccines.


The Scientific World Journal | 2012

In Vitro Evaluation of Antiprotozoal and Antiviral Activities of Extracts from Argentinean Mikania Species

Laura C. Laurella; Fernanda M. Frank; Andrea Sarquiz; María Rosario Alonso; Gustavo Carlos Giberti; Lucía V. Cavallaro; César A.N. Catalán; Silvia I. Cazorla; Emilio L. Malchiodi; Virginia S. Martino; Valeria P. Sülsen

The aim of this study was to investigate the antiprotozoal and antiviral activities of four Argentinean Mikania species. The organic and aqueous extracts of Mikania micrantha, M. parodii, M. periplocifolia, and M. cordifolia were tested on Trypanosoma cruzi epimastigotes, Leishmania braziliensis promastigotes, and dengue virus type 2. The organic extract of M. micrantha was the most active against T. cruzi and L. braziliensis exhibiting a growth inhibition of 77.6 ± 4.5% and 84.9 ± 6.1%, respectively, at a concentration of 10 μg/ml. The bioguided fractionation of M. micrantha organic extract led to the identification of two active fractions. The chromatographic profile and infrared analysis of these fractions revealed the presence of sesquiterpene lactones. None of the tested extracts were active against dengue virus type 2.


Infection and Immunity | 2014

Tc52 Amino-Terminal-Domain DNA Carried by Attenuated Salmonella enterica Serovar Typhimurium Induces Protection against a Trypanosoma cruzi Lethal Challenge

Marina N. Matos; Silvia I. Cazorla; Augusto E. Bivona; Celina Morales; Carlos A. Guzmán; Emilio L. Malchiodi

ABSTRACT In this work we immunized mice with DNA encoding full-length Tc52 or its amino- or carboxy-terminal (N- and C-term, respectively) domain carried by attenuated Salmonella as a DNA delivery system. As expected, Salmonella-mediated DNA delivery resulted in low antibody titers and a predominantly Th1 response, as shown by the ratio of IgG2a/IgG1-specific antibodies. Despite modest expression of Tc52 in trypomastigotes, the antibodies elicited by vaccination were able to mediate lysis of the trypomastigotes in the presence of complement and inhibit their invasion of mammal cells in vitro. The strongest functional activity was observed with sera from mice immunized with Salmonella carrying the N-term domain (SN-term), followed by Tc52 (STc52), and the C-term domain (SC-term). All immunized groups developed strong cellular responses, with predominant activation of Th1 cells. However, mice immunized with SN-term showed higher levels of interleukin-10 (IL-10), counterbalancing the inflammatory reaction, and also strong activation of Tc52-specific gamma interferon-positive (IFN-γ+) CD8+ T cells. In agreement with this, although all prototypes conferred protection against infection, immunization with SN-term promoted greater protection than that with SC-term for all parameters tested and slightly better protection than that with STc52, especially in the acute stage of infection. We conclude that the N-terminal domain of Tc52 is the section of the protein that confers maximal protection against infection and propose it as a promising candidate for vaccine development.


European Journal of Medicinal Chemistry | 2011

Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethylquinoline derivatives

Gisela C. Muscia; Silvia I. Cazorla; Fernanda M. Frank; Gabriela L. Borosky; Graciela Buldain; Silvia E. Asís; Emilio L. Malchiodi

Research and development of new drugs effective in the treatment of Trypanosoma cruzi infections are a real need for the 16 million people infected in the Americas. In a previous work, a quinoline derivative substituted by a 2-piperidylmethyl moiety showed to be active against Chagas disease and was considered a lead compound for further optimization. A series of ten analogous derivatives were tested against epimastigotes as a first approach. In view of their promising results, six of them were evaluated against the blood and intracellular replicative forms of the parasite in humans. Among them, compound 12 which possesses a 6-acetamidohexylamino substituent showed remarkable improvement in activity against epimastigotes, trypomastigotes and amastigotes compared with the structure lead, as well as a good selectivity index for the two parasite stages present in humans. In addition, treatment of infected mice with compound 12 induced a significant reduction in parasitemia compared with non-treated mice. Molecular modeling studies were performed by computational methods in order to elucidate the factors determining these experimental bioactivities.


Biochimica et Biophysica Acta | 2013

Trypanosoma cruzi, the causative agent of Chagas disease, modulates interleukin-6-induced STAT3 phosphorylation via gp130 cleavage in different host cells

Nicolás Eric Ponce; Eugenio Antonio Carrera-Silva; Andrea Pellegrini; Silvia I. Cazorla; Emilio L. Malchiodi; Ana Paula C. A. Lima; Susana Gea; Maria Pilar Aoki

Interleukin-6 mediates host defense and cell survival mainly through the activation of the transcription factor STAT3 via the glycoprotein gp130, a shared signal-transducing receptor for several IL-6-type cytokines. We have reported that the cardiotrophic parasite Trypanosoma cruzi protects murine cardiomyocytes from apoptosis. In agreement, an intense induction of the anti-apoptotic factor Bcl-2 is found in cardiac fibers during the acute phase of infection, establishing a higher threshold against apoptosis. We report here that inactive cruzipain, the main cysteine protease secreted by the parasite, specifically triggered TLR2 and the subsequent release of IL-6, which acted as an essential anti-apoptotic factor for cardiomyocyte cultures. Although comparable IL-6 levels were found under active cruzipain stimulation, starved cardiac cell monolayers could not be rescued from apoptosis. Moreover, cardiomyocytes treated with active cruzipain completely abrogated the STAT3 phosphorylation and nuclear translocation induced by recombinant IL-6. This inhibition was also observed on splenocytes, but it was reverted when the enzyme was complexed with chagasin, a parasite cysteine protease inhibitor. Furthermore, the inhibition of IL-6-induced p-STAT3 was evidenced in spleen cells stimulated with pre-activated supernatants derived from trypomastigotes. To account for these observations, we found that cruzipain enzymatically cleaved recombinant gp130 ectodomain, and induced the release of membrane-distal N-terminal domain of this receptor on human peripheral blood mononuclear cells. These results demonstrate, for the first time, that the parasite may modify the IL-6-induced response through the modulation of its cysteine protease activity, suggesting that specific inhibitors may help to improve the immune cell activation and cardioprotective effects.


Evidence-based Complementary and Alternative Medicine | 2013

Trypanocidal Activity of Smallanthus sonchifolius: Identification of Active Sesquiterpene Lactones by Bioassay-Guided Fractionation

Fernanda M. Frank; J. Ulloa; Silvia I. Cazorla; G. Maravilla; Emilio L. Malchiodi; A. Grau; Virginia S. Martino; César A.N. Catalán; Liliana Muschietti

In order to find novel plant-derived biologically active compounds against Trypanosoma cruzi, we isolated, from the organic extract of Smallanthus sonchifolius, the sesquiterpene lactones enhydrin (1), uvedalin (2), and polymatin B (3) by bioassay-guided fractionation technique. These compounds showed a significant trypanocidal activity against the epimastigote forms of the parasite with IC50 values of 0.84 μM (1), 1.09 μM (2), and 4.90 μM (3). After a 24 h treatment with 10 μg/mL of enhydrin or uvedalin, parasites were not able to recover their replication rate. Compounds 1 and 2 showed IC50 values of 33.4 μM and 25.0 μM against T. cruzi trypomastigotes, while polymatin B was not active. When the three compounds were tested against the intracellular forms of T. cruzi, they were able to inhibit the amastigote replication with IC50 of 5.17 μM, 3.34 μM, and 9.02 μM for 1, 2, and 3, respectively. The cytotoxicity of the compounds was evaluated in Vero cells obtaining CC50 values of 46.5 μM (1), 46.8 μM (2), and 147.3 μM (3) and the selectivity index calculated. According to these results, enhydrin and uvedalin might have potentials as agents against Chagas disease and could serve as lead molecules to develop new drugs.

Collaboration


Dive into the Silvia I. Cazorla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernanda M. Frank

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Augusto E. Bivona

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natacha Cerny

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Celina Morales

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge