Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia I. Gonzalez-Calvar is active.

Publication


Featured researches published by Silvia I. Gonzalez-Calvar.


Biology of Reproduction | 2003

Steroidogenic Acute Regulatory Protein in Ovarian Follicles of Gonadotropin-Stimulated Rats Is Regulated by a Gonadotropin-Releasing Hormone Agonist

Griselda Irusta; Fernanda Parborell; Marina Peluffo; Pulak R. Manna; Silvia I. Gonzalez-Calvar; Ricardo S. Calandra; Douglas M. Stocco; Marta Tesone

Abstract The aim of the present study was to examine the acute and chronic effects of the gonadotropin-releasing hormone agonist (GnRH-a) leuprolide acetate (LA) on the expression of the steroidogenic acute regulatory protein (StAR), the cytochrome P450 side-chain cleavage enzyme (P450scc), and steroid production in antral ovarian follicles obtained from prepubertal equine choriogonadotropin (eCG)-treated rats. Follicular contents of StAR and P450scc proteins were measured by Western blotting following in vivo injection of eCG (control) and eCG+LA (LA) to prepubertal rats. Treatment with eCG for 2 h resulted in no change in StAR protein content, but it was markedly increased at 4 and 8 h after hormone treatment. However, coadministration of eCG+LA produced a significant increase (P < 0.05) in StAR protein levels at 2, 4, and 8 h when compared with eCG treatment. Acute and chronic treatment with either eCG or eCG+LA did not alter the P450scc protein levels in freshly isolated follicles. The increase in StAR protein expression following LA treatment was qualitatively similar to StAR mRNA expression, as determined by quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. Furthermore, administration of eCG demonstrated a time-dependent increase (2–8 h) in the levels of StAR mRNA, and these levels were markedly increased by eCG+LA. However, the temporal response pattern of StAR mRNA was much greater at 2 h following LA administration when compared with controls. In addition, 48 h of LA treatment in eCG-treated rats resulted in a significant increase (P < 0.05) in follicular progesterone levels, whereas significant decreases in androgen (testosterone and androsterone) and estradiol levels were observed. Similar results were obtained when serum androgens and estradiol were measured, but serum progesterone levels were unchanged. Collectively, these findings demonstrate that the inhibitory effect of LA on ovarian androgen and estradiol levels is related to changes in the follicular levels of StAR protein and steroid production.


Neuroendocrinology | 2002

Interactions between Testicular Serotoninergic, Catecholaminergic, and Corticotropin-Releasing Hormone Systems Modulating cAMP and Testosterone Production in the Golden Hamster

Monica B. Frungieri; Karina Zitta; Omar P. Pignataro; Silvia I. Gonzalez-Calvar; Ricardo S. Calandra

We previously reported the presence of serotonin (5-HT) in testes from golden hamster, a photoperiodic species which is a useful model for the study of states of male (in)fertility. The aims of this study were to investigate: (1) the presence of intrinsic sources of 5-HT in the testis; (2) the role of 5-HT in in vitro androgen production; (3) the serotoninergic receptor subtypes in the testis, and (4) the existence of interactions among the 5-HT receptors and the testicular catecholaminergic and corticotropin-releasing hormone (CRH) systems. Immunohistochemical studies revealed the presence of tryptophan hydroxylase, a 5-HT-biosynthetic enzyme, in interstitial cells which show the characteristic punctate chromatin pattern of Leydig cells. We describe an inhibitory action of 5-HT on testosterone, dihydrotestosterone, and androstane-3α,17β-diol production from testes of peripubertal and adult hamsters maintained in a long photoperiod (14/10 h light/dark), and adult animals exposed to a short photoperiod (6/18 h light/dark). By using several agonists and antagonists of 5-HT receptors, we characterized 5-HT1A and 5-HT2A receptor subtypes involved in the inhibitory action of this neurotransmitter on human chorionic gonadotropin stimulated cyclic adenosine monophosphate and testosterone production. CRH also produced a negative modulation of both parameters, but epinephrine and norepinephrine, through α1/β1-adrenergic receptors, exerted a stimulatory action. 5-HT1A, 5-HT2, and CRH antagonists showed that the testicular activity of the serotoninergic system, but also the α1/β1-adrenergic receptor system, is mediated by CRH. Moreover, interactions between the 5-HT2A receptor system and α1/β-adrenergic receptors have been established. Thus, these data suggest that α1/β1-adrenergic receptors are involved in the local regulatory action exerted by 5-HT on steroidogenesis through a 5-HT2-receptor-mediated response and the CRH system.


Fertility and Sterility | 2010

Cyclooxygenase-2 in testes of infertile men: evidence for the induction of prostaglandin synthesis by interleukin-1β.

María Eugenia Matzkin; Artur Mayerhofer; Soledad Paola Rossi; Betina Gonzalez; Candela Rocío González; Silvia I. Gonzalez-Calvar; Claudio Terradas; Roberto Ponzio; Elisa Puigdomenech; Oscar Levalle; Ricardo S. Calandra; Monica B. Frungieri

As we previously reported, testes of men suffering from hypospermatogenesis and germ cell arrest or Sertoli cell-only syndrome show a major increase in the number of macrophages expressing interleukin-1β (IL-1β) and abundant expression of cyclooxygenase-2 (COX-2), the inducible isoform of the key enzyme in the biosynthesis of prostaglandins (PGs), in Leydig cells. In the present study we report [1] a positive correlation between IL-1β levels and COX-2 expression in testes of infertile patients, [2] the induction of COX-2 by IL-1β in mouse Leydig cells (TM3) and human macrophages (THP-1), and therefore [3] evidence for an IL-1β-dependent induction of testicular inflammatory states.


Reproductive Biology and Endocrinology | 2010

Expression of the TGF-beta1 system in human testicular pathologies

Candela Rocío González; María Eugenia Matzkin; Monica B. Frungieri; Claudio Terradas; Roberto Ponzio; Elisa Puigdomenech; Oscar Levalle; Ricardo S. Calandra; Silvia I. Gonzalez-Calvar

BackgroundIn non-obstructive azoospermia, histological patterns of Sertoli cell-only Syndrome (SCO) and hypospermatogenesis (H) are commonly found. In these pathologies, Leydig cell hyperplasia (LCH) is detected in some patients. Since TGF-β1 is involved in cellular proliferation/development, the aim of this work was to analyze the expression of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5), and the co-receptor endoglin in human biopsies from patients with idiopathic infertility.MethodsSpecific immunostaining of TGF-β1, its receptors TGFBRII, TGFBRI (ALK-1 and ALK-5), co-receptor endoglin and Smads proteins, were carried out in testicular biopsies from normal and infertile men with SCO or H. Gene expression of TGF-β1 system were made in biopsies from infertile patients with semi-quantitative and quantitative PCR.ResultsImmunohistochemical studies revealed that TGF-β1 and its specific receptors are present in Leydig cells in biopsies from normal tissue or patients with SCO or H with or without LCH. Smad proteins, which are involved in TGF-β1 signaling, are also detected in both their phosphorylated (activated) and dephosphorylated form in all samples TGF-β1, ALK-1 and endoglin gene expression are stronger in human biopsies with LCH than in those with SCO or H. Neither TGFBRII nor ALK-5 gene expression showed significant differences between pathologies. A significant correlation between ALK-1 and endoglin expression was observed.ConclusionsIn conclusion, the high levels of mRNA and protein expression of the TGF-β1 system in patients with LCH, particularly ALK1 and its correlation with endoglin, suggest that these proteins acting in concert might be, at least in part, committed actors in the Leydig cell hyperplasia.


Reproduction | 2009

Testosterone induction of prostaglandin-endoperoxide synthase 2 expression and prostaglandin F2α production in hamster Leydig cells

María Eugenia Matzkin; Silvia I. Gonzalez-Calvar; Artur Mayerhofer; Ricardo S. Calandra; Monica B. Frungieri

We have previously observed expression of prostaglandin-endoperoxide synthase 2 (PTGS2), the key enzyme in the biosynthesis of prostaglandins (PGs), in reproductively active Syrian hamster Leydig cells, and reported an inhibitory role of PGF(2alpha) on hamster testicular steroidogenesis. In this study, we further investigated PTGS2 expression in hamster Leydig cells during sexual development and photoperiodic gonadal regression. Since PTGS2 is mostly expressed in pubertal and reproductively active adult hamsters with high circulating levels of LH and androgens, we studied the role of these hormones in the regulation/maintenance of testicular PTGS2/PGF(2alpha). In active hamster Leydig cells, LH/hCG and testosterone induced PTGS2 and PGF(2alpha) production, and their actions were abolished by the antiandrogen bicalutamide (Bi). These results indicate that LH does not exert a direct effect on PG synthesis. Testosterone also stimulated phosphorylation of the mitogen-activated protein kinase isoforms 3/1 (MAPK3/1) within minutes and hours, but the testosterone metabolite dihydrotestosterone had no effect on PTGS2 and MAPK3/1. Because Bi and U0126, an inhibitor of the MAP kinase kinases 1 and 2 (MAP2K1/2), abolished testosterone actions on MAPK3/1 and PTGS2, our studies suggest that testosterone directly induces PTGS2/PGF(2alpha) in hamster Leydig cells via androgen receptors and a non-classical mechanism that involves MAPK3/1 activation. Since PGF(2alpha) inhibits testosterone production, it might imply the existence of a regulatory loop that is setting a brake on steroidogenesis. Thus, the androgen environment might be crucial for the regulation of testicular PG production at least during sexual development and photoperiodic variations in hamsters.


Neuroendocrinology | 2005

Insights into GABA receptor signalling in TM3 Leydig cells.

Richard F.G. Doepner; Christof Geigerseder; Monica B. Frungieri; Silvia I. Gonzalez-Calvar; Ricardo S. Calandra; Romi Raemsch; Karl J. Föhr; Lars Kunz; Artur Mayerhofer

γ-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABAA receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABAA receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABAA signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABAA receptor subunits, but also bind the GABA agonist [3H]muscimol with a binding affinity in the range reported for other endocrine cells (Kd = 2.740 ± 0.721 nM). However, they exhibit a low Bmax value of 28.08 fmol/mg protein. Typical GABAA receptor-associated events, including Cl– currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABAA agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABAA receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated.


Molecular and Cellular Endocrinology | 2013

MAP kinase phosphatase-3 (MKP-3) is transcriptionally and post-translationally up-regulated by hCG and modulates cAMP-induced p21 expression in MA-10 Leydig cells

Mercedes Mori Sequeiros García; Natalia Gomez; Alejandra Gorostizaga; Andrea Acquier; Silvia I. Gonzalez-Calvar; Carlos F. Mendez

Luteinizing hormone (LH) activates ERK1/2, MAP kinases (MAPKs) necessary for its action on steroidogenesis and cell proliferation, and also induces MAPK phosphatase-1 (MKP-1), which rapidly dephosphorylates nuclear ERK1/2. MKP-3 is a cytoplasmic ERK-phosphatase up-regulated by proliferative stimuli. MKP-3 also dephosphorylates transcription factor FOXO1, promoting its transport to the nucleus. Here we analyzed MKP-3 expression in MA-10 Leydig cells and demonstrated that LH receptor (LHR) activation with human gonadotropin hormone (hCG) and an analog of its second messenger, 8Br-cAMP, up-regulates MKP-3 by transcriptional and post-translational mechanisms. It is known that FOXO1 drives the expression of the cell cycle inhibitor p21. Since the activation of this transcription factor by MKP-3 has been reported, we assessed the effect of shRNA against MKP-3 on p21mRNA levels. 8Br-cAMP increased these levels (2-fold at 2h) and MKP-3 down-regulation reduced this effect. Our work demonstrates that LH/hCG tightly up-regulates MKP-3 which in turn, dephosphorylates ERK1/2 and drives p21 expression. These events could contribute to counteract hormonal action on cell proliferation.


Reproductive Biology | 2012

Influence of the photoperiod on TGF-β1 and p15 expression in hamster Leydig cells

Candela Rocío González; Ricardo S. Calandra; Silvia I. Gonzalez-Calvar

Adult hamsters exposed to short photoperiods show a marked atrophy of their internal reproductive organs, including a reduction in size, though not number of Leydig cells. Transforming growth factor-β1 (TGF-β1) is involved in the regulation of growth and proliferation of different cell types. The aim of the present study was to examine the influence of photoperiod on the protein and gene expression of TGF-β1 and its receptors as well as gene expression of p15. The effect of TGF-β1 on the expression of p15 in purified Leydig cells from regressed and non-regressed hamster testes was also tested. Protein and gene expression of TGF-β1 was detected in both regressed and non-regressed testes. In contrast to the activin receptor-like kinase 1 (ALK-1), the TGF-β1, the activin receptor-like kinase 5 (ALK-5) and the co-receptor endoglin all showed a greater basal expression in regressed than non-regressed hamster testes. Melatonin induced the TGF-β1 mRNA expression in purified Leydig cells from non-regressed testes. The p15 mRNA level was greater in regressed than non-regressed testes. A high dose of TGF-β1 during a short incubation period increased the p15 mRNA level in Leydig cells from non-regressed testes. ALK-5 and mitogen-activated protein kinase (MAPK) p38 might have played a role in this process. In regressed hamster testes, the p15 mRNA level increased due to a low dose of TGF-β1 after short incubation periods and to a high dose after longer incubation periods; in both instances, ALK-5, ERK 1/2 and p38 were involved. Collectively, these results suggest that the alterations in p15 expression, mediated by MAPK, are involved in the shift between the active and inactive states in hamster Leydig cells.


Endocrinology | 2013

MAPK Phosphatase-2 (MKP-2) Is Induced by hCG and Plays a Role in the Regulation of CYP11A1 Expression in MA-10 Leydig Cells

Natalia Gomez; Alejandra Gorostizaga; María M. Mori Sequeiros García; Laura Brion; Andrea Acquier; Silvia I. Gonzalez-Calvar; Carlos F. Mendez; Ernesto J. Podestá

MAPKs such as ERK1/2 are dephosphorylated, and consequently inactivated, by dual specificity phosphatases (MKPs). In Leydig cells, LH triggers ERK1/2 phosphorylation through the action of protein kinase A. We demonstrate that, in MA-10 Leydig cells, LH receptor activation by human chorionic gonadotropin (hCG) up-regulates MKP-2, a phosphatase that dephosphorylates ERK1/2, among other MAPKs. After 2 hours, hCG and 8-bromo-cAMP (8Br-cAMP) significantly increased MKP-2 mRNA levels (3-fold), which declined to basal levels after 6 hours. MKP-2 protein accumulation exhibited a similar kinetic profile. In cells transiently expressing flag-MKP-2 protein, hCG/8Br-cAMP stimulation promoted the accumulation of the chimera (2.5-fold after 3 h of stimulation). Pharmacologic and biochemical approaches showed that the accumulation of flag-MKP-2 involves a posttranslational modification that increases MKP-2 half-life. MKP-2 down-regulation by a short hairpin RNA (MKP-2 shRNA) raised the levels of phosphorylated ERK1/2 reached by 8Br-cAMP stimulation. This effect was evident after 180 min of stimulation, which suggests that MKP-2 down-regulates the late phase of cAMP-induced ERK1/2 activity. Also, MKP-2 down-regulation by MKP-2 shRNA increased the stimulatory effect of 8Br-cAMP on both promoter activity and messenger levels of CYP11A1, which encodes for the steroidogenic enzyme P450scc and is induced by LH/hCG through protein kinase A and ERK1/2 activities. Our findings demonstrate, for the first time, that LH/hCG tightly regulates MKP-2 expression, which modulates the induction of CYP11A1 by 8Br-cAMP. MKP-2 up-regulation might control ERK1/2 activity in a specific temporal frame to modulate the expression of a finite repertory of ERK-dependent genes.


Molecular and Cellular Endocrinology | 2015

cAMP-activated Nr4a1 expression requires ERK activity and is modulated by MAPK phosphatase-1 in MA-10 Leydig cells.

Mercedes Mori Sequeiros García; Alejandra Gorostizaga; Laura Brion; Silvia I. Gonzalez-Calvar

In Leydig cells, LH and cAMP promote ERK1/2 activation and MAPK phosphatase-1 (MKP-1) induction. MKP-1 up-regulation, which involves post-translational modifications such as ERK1/2-mediated phosphorylation, reduces ERK1/2 phosphorylation as well as Steroidogenic Acute Regulatory (StAR) protein expression and steroidogenesis. As LH- and cAMP-promoted StAR transcription requires the induction of Nur77, product of Nr4a1 gene, we analyzed the roles of ERK1/2 and MKP-1 in 8Br-cAMP-mediated Nr4a1 expression in MA-10 Leydig cells. Pharmacological blockade of ERK1/2 activation partially reduced the 8Br-cAMP-mediated increase in both Nr4a1 messenger levels and promoter activity. MKP-1 knock-down increased 8Br-cAMP-induced promoter activity, while its over-expression produced the opposite effect. It is concluded that Nr4a1 induction is dependent on ERK1/2 and that MKP-1 negatively regulates this induction. Experiments based on the over-expression of MKP-1 mutated forms revealed that MKP-1 half life is determined by post-translational modifications in ERK-consensus sites, a regulation that modulates the effect of MKP-1 on Nr4a1 expression.

Collaboration


Dive into the Silvia I. Gonzalez-Calvar's collaboration.

Top Co-Authors

Avatar

Ricardo S. Calandra

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Monica B. Frungieri

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Candela Rocío González

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Susana B. Rulli

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Terradas

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Ponzio

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge