Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Lemma is active.

Publication


Featured researches published by Silvia Lemma.


Biochimica et Biophysica Acta | 2013

V-ATPase is a candidate therapeutic target for Ewing sarcoma

Sofia Avnet; Gemma Di Pompo; Silvia Lemma; Manuela Salerno; Francesca Perut; Gloria Bonuccelli; Donatella Granchi; Nicoletta Zini; Nicola Baldini

Suppression of oxidative phosphorylation combined with enhanced aerobic glycolysis and the resulting increased generation of protons are common features of several types of cancer. An efficient mechanism to escape cell death resulting from intracellular acidification is proton pump activation. In Ewing sarcoma (ES), although the tumor-associated chimeric gene EWS-FLI1 is known to induce the accumulation of hypoxia-induced transcription factor HIF-1α, derangements in metabolic pathways have been neglected so far as candidate pathogenetic mechanisms. In this paper, we observed that ES cells simultaneously activate mitochondrial respiration and high levels of glycolysis. Moreover, although the most effective detoxification mechanism of proton intracellular storage is lysosomal compartmentalization, ES cells show a poorly represented lysosomal compartment, but a high sensitivity to the anti-lysosomal agent bafilomycin A1, targeting the V-ATPase proton pump. We therefore investigated the role of V-ATPase in the acidification activity of ES cells. ES cells with the highest GAPDH and V-ATPase expression also showed the highest acidification rate. Moreover, the localization of V-ATPase was both on the vacuolar and the plasma membrane of all ES cell lines. The acidic extracellular pH that we reproduced in vitro promoted high invasion ability and clonogenic efficiency. Finally, targeting V-ATPase with siRNA and omeprazole treatments, we obtained a significant selective reduction of tumor cell number. In summary, glycolytic activity and activation of V-ATPase are crucial mechanisms of survival of ES cells and can be considered as promising selective targets for the treatment of this tumor.


The International Journal of Biochemistry & Cell Biology | 2016

Energy metabolism in osteoclast formation and activity.

Silvia Lemma; Martina Sboarina; Paolo E. Porporato; Nicoletta Zini; Pierre Sonveaux; Gemma Di Pompo; Nicola Baldini; Sofia Avnet

Osteoclastogenesis and osteolysis are energy-consuming processes supported by high metabolic activities. In human osteoclasts derived from the fusion of monocytic precursors, we found a substantial increase in the number of mitochondria with differentiation. In mature osteoclasts, mitochondria were also increased in size, rich of cristae and arranged in a complex tubular network. When compared with immature cells, fully differentiated osteoclasts showed higher levels of enzymes of the electron transport chain, a higher mitochondrial oxygen consumption rate and a lower glycolytic efficiency, as evaluated by extracellular flux analysis and by the quantification of metabolites in the culture supernatant. Thus, oxidative phosphorylation appeared the main bioenergetic source for osteoclast formation. Conversely, we found that bone resorption mainly relied on glycolysis. In fact, osteoclast fuelling with galactose, forcing cells to depend on Oxidative Phosphorylation by reducing the rate of glycolysis, significantly impaired Type I collagen degradation, whereas non-cytotoxic doses of rotenone, an inhibitor of the mitochondrial complex I, enhanced osteoclast activity. Furthermore, we found that the enzymes associated to the glycolytic pathway are localised close to the actin ring of polarised osteoclasts, where energy-demanding activities associated with bone degradation take place. In conclusion, we demonstrate that the energy required for osteoclast differentiation mainly derives from mitochondrial oxidative metabolism, whereas the peripheral cellular activities associated with bone matrix degradation are supported by glycolysis. A better understanding of human osteoclast energy metabolism holds the potential for future therapeutic interventions aimed to target osteoclast activity in different pathological conditions of bone.


Oncotarget | 2016

Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance

Sofia Avnet; Silvia Lemma; Margherita Cortini; Paola Pellegrini; Francesca Perut; Nicoletta Zini; Katsuyuki Kusuzaki; Tokuhiro Chano; Giulia Grisendi; Massimo Dominici; Angelo De Milito; Nicola Baldini

Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24–48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, short-term acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.


PLOS ONE | 2016

Identification and validation of housekeeping genes for gene expression analysis of cancer stem cells

Silvia Lemma; Sofia Avnet; Manuela Salerno; Tokuhiro Chano; Nicola Baldini

The characterization of cancer stem cell (CSC) subpopulation, through the comparison of the gene expression signature in respect to the native cancer cells, is particularly important for the identification of novel and more effective anticancer strategies. However, CSC have peculiar characteristics in terms of adhesion, growth, and metabolism that possibly implies a different modulation of the expression of the most commonly used housekeeping genes (HKG), like b-actin (ACTB). Although it is crucial to identify which are the most stable HKG genes to normalize the data derived from quantitative Real-Time PCR analysis to obtain robust and consistent results, an exhaustive validation of reference genes in CSC is still missing. Here, we isolated CSC spheres from different musculoskeletal sarcomas and carcinomas as a model to investigate on the stability of the mRNA expression of 15 commonly used HKG, in respect to the native cells. The selected genes were analysed for the variation coefficient and compared using the popular algorithms NormFinder and geNorm to evaluate stability ranking. As a result, we found that: 1) Tata Binding Protein (TBP), Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide (YWHAZ), Peptidylprolyl isomerase A (PPIA), and Hydroxymethylbilane synthase (HMBS) are the most stable HKG for the comparison between CSC and native cells; 2) at least four reference genes should be considered for robust results; 3) the use of ACTB should not be recommended, 4) specific HKG should be considered for studies that are focused only on a specific tumor type, like sarcoma or carcinoma. Our results should be taken in consideration for all the studies of gene expression analysis of CSC, and will substantially contribute for future investigations aimed to identify novel anticancer therapy based on CSC targeting.


Oncotarget | 2017

Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma

Gemma Di Pompo; Silvia Lemma; Lorenzo Canti; Nadia Rucci; Marco Ponzetti; Costantino Errani; Davide Donati; Shonagh Russell; Robert J. Gillies; Tokuhiro Chano; Nicola Baldini; Sofia Avnet

Cancer-induced bone pain (CIBP) is common in patients with bone metastases (BM), significantly impairing quality of life. The current treatments for CIBP are limited since they are often ineffective. Local acidosis derived from glycolytic carcinoma and tumor-induced osteolysis is only barely explored cause of pain. We found that breast carcinoma cells that prefer bone as a metastatic site have very high extracellular proton efflux and expression of pumps/ion transporters associated with acid-base balance (MCT4, CA9, and V-ATPase). Further, the impairment of intratumoral acidification via V-ATPase targeting in xenografts with BM significantly reduced CIBP, as measured by incapacitance test. We hypothesize that in addition to the direct acid-induced stimulation of nociceptors in the bone, a novel mechanism mediated by the acid-induced and tumor-associated mesenchymal stroma might ultimately lead to nociceptor sensitization and hyperalgesia. Consistent with this, short-term exposure of cancer-associated fibroblasts, mesenchymal stem cells, and osteoblasts to pH 6.8 promotes the expression of inflammatory and nociceptive mediators (NGF, BDNF, IL6, IL8, IL1b and CCL5). This is also consistent with a significant correlation between breakthrough pain, measured by pain questionnaire, and combined high serum levels of BDNF and IL6 in patients with BM, and also by immunofluorescence staining showing IL8 expression that was more in mesenchymal stromal cells rather than in tumors cells, and close to LAMP-2 positive acidifying carcinoma cells in BM tissue sections.In summary, intratumoral acidification in BM might promote CIBP also by activating the tumor-associated stroma, offering a new target for palliative treatments in advanced cancer.Cancer-induced bone pain (CIBP) is common in patients with bone metastases (BM), significantly impairing quality of life. The current treatments for CIBP are limited since they are often ineffective. Local acidosis derived from glycolytic carcinoma and tumor-induced osteolysis is only barely explored cause of pain. We found that breast carcinoma cells that prefer bone as a metastatic site have very high extracellular proton efflux and expression of pumps/ion transporters associated with acid-base balance (MCT4, CA9, and V-ATPase). Further, the impairment of intratumoral acidification via V-ATPase targeting in xenografts with BM significantly reduced CIBP, as measured by incapacitance test. We hypothesize that in addition to the direct acid-induced stimulation of nociceptors in the bone, a novel mechanism mediated by the acid-induced and tumor-associated mesenchymal stroma might ultimately lead to nociceptor sensitization and hyperalgesia. Consistent with this, short-term exposure of cancer-associated fibroblasts, mesenchymal stem cells, and osteoblasts to pH 6.8 promotes the expression of inflammatory and nociceptive mediators (NGF, BDNF, IL6, IL8, IL1b and CCL5). This is also consistent with a significant correlation between breakthrough pain, measured by pain questionnaire, and combined high serum levels of BDNF and IL6 in patients with BM, and also by immunofluorescence staining showing IL8 expression that was more in mesenchymal stromal cells rather than in tumors cells, and close to LAMP-2 positive acidifying carcinoma cells in BM tissue sections. In summary, intratumoral acidification in BM might promote CIBP also by activating the tumor-associated stroma, offering a new target for palliative treatments in advanced cancer.


Biochimica et Biophysica Acta | 2017

MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: A new rationale for the pathogenesis of osteolytic bone metastases

Silvia Lemma; Gemma Di Pompo; Paolo E. Porporato; Martina Sboarina; Shonagh Russell; Robert J. Gillies; Nicola Baldini; Pierre Sonveaux; Sofia Avnet

Recent progress in dissecting the molecular paracrine circuits of cancer and stromal cells in bone metastases (BM) are offering new options to improve current merely palliative approach. The study of tumor-stroma metabolic interplay may further ameliorate this scenario. In this context, we demonstrated that highly glycolytic MDA-MB-231 cancer cells, that form osteolytic BM in vivo, release a large amount of lactate at a significantly higher level than MCF7 cells. Thus, we speculated that lactate released from carcinoma cells is uptaken and metabolically used by osteoclasts, the key players of osteolysis associated with BM. First, we demonstrated that the release of lactate at the bone site is mediated by monocarboxylate transporter 4 (MCT4), as revealed by immunostaining and MCT4 localization at the plasma membrane of tumor cells in mouse model of BM and in human tissue sections of BM. Then, we showed that in vitro lactate is uptaken by osteoclasts to be used as a fuel for the oxidative metabolism of osteoclasts, ultimately enhancing Type I collagen resorption. The passive transport of lactate into osteoclasts was mediated by MCT1: MCT1 expression is significantly upregulated during osteoclast differentiation and Type I collagen resorption is significantly impaired when osteoclasts are treated with 7-(N-benzyl-N-methylamino)-2-oxo-2H-chromene-3-carboxylic acid, an MCT-1 inhibitor. Together, these data demonstrate that lactate released by glycolytic breast carcinoma cells in the bone microenvironment promotes the formation of osteolytic lesions, and provide the rationale for further studies on the use of MCT1 targeting as a novel therapeutic approach in advanced cancer patients with BM.


Oncotarget | 2018

Prominent role of RAB39A-RXRB axis in cancer development and stemness

Tokuhiro Chano; Hiroko Kita; Sofia Avnet; Silvia Lemma; Nicola Baldini

In this study, we found that RAB39A, a member of the RAS oncogene family, was selectively expressed in cancer cells of different histotypes, by analyzing gene expression in human osteosarcoma cells and the cancer stem cells (CSCs) and by comparing them with normal cells through global transcriptomics and principal component analyses. We further validated RAB39A as a therapeutic target, by silencing its expression. The silencing impaired cancer stemness and spherogenic ability in vitro, as well as tumorigenesis in vivo. RNA-seq analyses in the silenced spheres suggested that RAB39A is associated downstream with RXRB and KLF4. Notably, RXRB expression was inhibited in RAB39A-silenced CSCs. Induced overexpression of RXRB in RAB39A-silenced cells restored spherogenic ability and tumorigenesis, confirming RXRB as a major effector of RAB39A. Quantitative RT-PCR analysis of ∼400 human cancer tissues showed that RAB39A was highly expressed in sarcomas and in malignancies of lymphoid, adrenal and testicular tissues. Our data provide the rationale for targeting of the RAB39A-RXRB axis as a therapy for aggressive cancers.


International Journal of Molecular Sciences | 2018

Validation of Suitable Housekeeping Genes for the Normalization of mRNA Expression for Studying Tumor Acidosis

Silvia Lemma; Sofia Avnet; Michael Meade; Tokuhiro Chano; Nicola Baldini

Similar to other types of cancer, acidification of tumor microenvironment is an important feature of osteosarcoma, and a major source of cellular stress that triggers cancer aggressiveness, drug resistance, and progression. Among the different effects of low extracellular pH on tumor cells, we have recently found that short-term exposure to acidosis strongly affects gene expression. This alteration might also occur for the most commonly used housekeeping genes (HKG), thereby causing erroneous interpretation of RT-qPCR data. On this basis, by using osteosarcoma cells cultured at different pH values, we aimed to identify the ideal HKG to be considered in studies on tumor-associated acidosis. We verified the stability of 15 commonly used HKG through five algorithms (NormFinder, geNorm, BestKeeper, ΔCT, coefficient of variation) and found that no universal HKG is suitable, since at least four HKG are necessary for proper normalization. Furthermore, according to the acceptable range of values, YWHAZ, GAPDH, GUSB, and 18S rRNA were the most stable reference genes at different pH. Our results will be helpful for future investigations focusing on the effect of altered microenvironment on cancer behavior, particularly on the effectiveness of anticancer therapies in acid conditions.


Oncotarget | 2015

Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins

Camilla Evangelisti; Pia Bernasconi; Paola Cavalcante; Cristina Cappelletti; Maria Rosaria D'Apice; Paolo Sbraccia; Giuseppe Novelli; Sabino Prencipe; Silvia Lemma; Nicola Baldini; Sofia Avnet; Stefano Squarzoni; Alberto M. Martelli; Giovanna Lattanzi


Journal of Bone and Joint Surgery-british Volume | 2017

INTRATUMORAL ACIDOSIS FOSTERS CANCER-INDUCED BONE PAIN THROUGH THE ACTIVATION OF MESENCHYMAL CELLS OF TUMOUR-ASSOCIATED STROMA

Sofia Avnet; G. Di Pompo; Silvia Lemma; Marco Ponzetti; Nadia Rucci; Robert J. Gillies; Tokuhiro Chano; Nicola Baldini

Collaboration


Dive into the Silvia Lemma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tokuhiro Chano

Shiga University of Medical Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Gillies

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Nicoletta Zini

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Martina Sboarina

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Paolo E. Porporato

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pierre Sonveaux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge