Silvia Letasiova
Slovak University of Technology in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Letasiova.
Journal of Pharmacy and Pharmacology | 2006
Silvia Letasiova; Soňa Jantová; Milan Miko; Renáta Ovádeková; Mira Horvathova
Our primary aim was to study berberine, a potential anti‐cancer drug, for its cytotoxic and antiproliferative activity in‐vitro using Ehrlich ascites carcinoma (EAC) cells. Cytotoxicity was measured by the growth inhibition assay. We investigated the effect of berberine on the biosynthesis of macro‐molecules (DNA, RNA, proteins), cell cycle effects and induction of dsDNA damage and apoptosis in berberine‐treated EAC cells. Our results showed that berberine acts cytotoxically on EAC cells. The cytotoxicity was directly concentration and time dependent. The highest cytotoxic concentrations (100 and 50 μg mL−1) induced intercalation of berberine with DNA, formation of dsDNA breaks, inhibition of DNA synthesis and death of EAC cells. A concentration of 10 μg mL−1 induced clear apoptotic cell death, which was followed by inhibition of protein synthesis.
Journal of Photochemistry and Photobiology B-biology | 2011
Soňa Jantová; Katarína Koňariková; Silvia Letasiova; Ema Paulovičová; Viktor Milata; Vlasta Brezová
The present study demonstrates photoinduced generation of superoxide radical anion and singlet oxygen upon UVA irradiation of ethyl 1,4-dihydro-8-nitro-4-oxoquinoline-3-carboxylate (DNQC), and its cytotoxic/phototoxic effects on murine leukemia L1210 cells. The formation of reactive oxygen species (ROS) was investigated by EPR spectroscopy using in situ spin trapping technique and 4-hydroxy-2,2,6,6-piperidine (TMP) for singlet oxygen ((1)O(2)) detection. The EPR spectra monitored upon photoexcitation of aerated solutions of DNQC in dimethylsulfoxide evidenced the efficient activation of molecular oxygen via Types I and II mechanisms. The cytotoxic/phototoxic effects of DNQC, analysis of cell cycle, induction of apoptosis/necrosis, DNA damage and molecular mechanism of apoptotic death of L1210 cells in dark and in the presence of UVA irradiation were compared. DNQC induced a different cytotoxic/phototoxic effect, which was concentration- and time-dependent. The four highest tested concentrations of non-photoactivated and photoactivated DNQC induced immediate cytotoxic/phototoxic effect after 24h cultivation of L1210 cells. This effect decreased with the time of treatment. The irradiation increased the sensitivity of leukemia cell line on DNQC, but the cell sensitivity decreased with time of processing. Quinolone derivative DNQC significantly induced direct DNA strand breaks in L1210 cells, which were increased with the irradiation of cells. The DNA damage generated by DNQC alone/with combination of UVA irradiation induced cell arrest in G(0)/G(1) and G(2)/M phases, decrease in the number of L1210 cells in Sphase and apoptotic cell death of certain part of cell population after 24 h of influence. DNQC alone/with combination of UVA irradiation induced apoptosis in L1210 cells through ROS-dependent mitochondrial pathway.
Biologia | 2008
Marica Theiszová; Soňa Jantová; Silvia Letasiova; Ľuboš Valík; Martin T. Palou
The number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH− groups and F− ions. The aim of this experimental investigation was to use the embryonal mouse fibroblast cell line NIH-3T3 for comparative study of basal cytotoxicity of fluoridated biomaterials FHA and FA discs. Hydroxyapatite (HA) disc, high-density polyethylene as negative control and polyvinyl chloride (PVC) containing organotin stabilizer as positive control were used as standard biomaterials. The appropriateness of the use of NIH-3T3 cells and their sensitivity for tested biomaterials were evaluated on the basis of five cytotoxic end points: cell proliferation, cell morphology, lactate dehydrogenase (LDH) released, protein and DNA cell content. The basal cytotoxicity of FHA, FA and HA discs was measured by direct contact method. FHA composite, FA and HA demonstrated in cell line NIH-3T3 nearly similar basal cytotoxicity increasing with the time of treatment. After 72 h of biomaterials treatment, about 25% inhibition of cell number, unchanged morphology of dividing cells, 6.31–0.16% increase of released LDH, about 10% inhibition of cell protein content and about 20% inhibition of DNA content was found. On the other hand, from the growth rates it resulted that NIH-3T3 cells, affected by tested biomaterials, divided about 20% slowlier than the control (untreated cells). Using the linear regression analysis we found out that deviations in measurements of cytotoxicity by four methods were as follows: less than 10% for cell number, protein and DNA content methods and 12.4% for released LDH method. Based on a good correlation of the cytotoxicity of biomaterials obtained from all end points we could conclude that fibroblast NIH-3T3 cell line was appropriate for measuring the basal cytoxicity of tested biomaterials.
Acta Biologica Hungarica | 2009
Soňa Jantová; Silvia Letasiova; Marica Theiszová; Martin T. Palou
Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetic composite that contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experiment was to evaluate the cellular responses of murine fibroblast NIH-3T3 cells in vitro to solid solutions of FHA and FA and to compare them with the effect of hydroxyapatite (HA). We studied 24, 48 and 72 h effects of biomaterials on cell morphology, proliferation and cell cycle of NIH-3T3 cells by eluate assay. Furthermore, we examined the ability of FHA, FA and HA to induce cell death and DNA damage. Our cytotoxic/antiproliferative studies indicated that any of tested biomaterials did not cause the total inhibition of cell division. Biomaterials induced different antiproliferative effects increasing in the order HA < FHA < FA which were time- and concentration-dependent. None of the tested biomaterials induced necrotic/apoptotic death of NIH-3T3 cells. On the other hand, after 72 h we found that FHA and FA induced G0/G1 arrest of NIH-3T3 cells, while HA did not affect any cell cycle phases. Comet assay showed that while HA demonstrated weaker genotoxicity, DNA damage induced by FHA and FA caused G0/G1 arrest of NIH-3T3 cells. Fluoridation of hydroxyapatite and different FHA and FA structure caused different cell response of NIH-3T3 cells to biomaterials.
Toxicology in Vitro | 2017
Helena Kandarova; Silvia Letasiova; Els Adriaens; Robert Guest; J.A. Willoughby; A. Drzewiecka; K. Gruszka; Nathalie Alépée; Sandra Verstraelen; An R. Van Rompay
Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI project was to develop tiered testing strategies for eye irritation assessment. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different methods. Here, the results obtained with the EpiOcular™ Eye Irritation Test (EIT), adopted as OECD TG 492, are shown. The primary aim of this study was to evaluate of the performance of the test method to discriminate between chemicals not requiring classification for serious eye damage/eye irritancy (No Category) and chemicals requiring classification and labelling. In addition, the predictive capacity in terms of in vivo drivers of classification (i.e. corneal opacity, conjunctival redness and persistence at day 21) was investigated. EpiOcular™ EIT achieved a sensitivity of 97%, a specificity of 87% and accuracy of 95% and also confirmed its excellent reproducibility (100%) from the original validation. The assay was applicable to all chemical categories tested in this project and its performance was not limited to the particular driver of the classification. In addition to the existing prediction model for dichotomous categorization, a new prediction model for Cat 1 is suggested.
Toxicology in Vitro | 2018
Helena Kandarova; J.A. Willoughby; Wim H. de Jong; Silvia Letasiova; T. Milasova; M. Bachelor; B. Breyfogle; Yuki Handa; Liset J.J. de la Fonteyne; Kelly P Coleman
Assessment of dermal irritation is an essential component of the safety evaluation of medical devices. Reconstructed human epidermis (RhE) models have replaced rabbit skin irritation testing for neat chemicals and their mixtures (OECD Test Guideline 439). However, this guideline cannot be directly applied to the area of medical devices (MD) since their non-toxicity assessment is largely based on the testing of MD extracts that may have very low irritation potential. Therefore, the RhE-methods previously validated with neat chemicals needed to be modified to reflect the needs for detection of low levels of potential irritants. A protocol employing RhE EpiDerm was optimized in 2013 using known irritants and spiked polymers (Casas et al., 2013, TIV). In 2014 and 2015 MatTek In Vitro Life Science Laboratories (IVLSL) and RIVM assessed the transferability of the assay. After the successful transfer and standardization of the protocol, 17 laboratories were trained in the use of the protocol in the preparation for the validation. Laboratories produced data with 98% agreement of predictions for the selected references and controls. We conclude that a modified RhE skin irritation test has the potential to address the skin irritation potential of the medical devices. Standardization and focus on the technical issues is essential for accurate prediction.
Toxicology in Vitro | 2018
Helena Kandarova; Hana Bendová; Silvia Letasiova; Kelly P Coleman; Wim H. de Jong; Dagmar Jirova
Several irritants were used in the in vitro irritation medical device round robin. The objective of this study was to verify their irritation potential using the human patch test (HPT), an in vitro assay, and in vivo data. The irritants were lactic acid (LA), heptanoic acid (HA), sodium dodecyl sulfate (SDS), Genapol® X-80 (GP), and Y-4 polymer. Dilute saline and sesame seed oil (SSO) solutions of each were evaluated using a 4 and 18 h HPT and the EpiDerm™ SIT-MD RhE assay; results were then compared to existing rabbit skin irritation test data. Results from the 4 h HPT were negative in most cases except for GP and SDS, while the 18 h HPT also identified some LA, HA, and GP samples as irritants. EpiDerm™ SIT-MD correctly identified all irritants except GP in SSO due to limited solubility. Data from cutaneous rabbit irritation tests were negative, while all intracutaneous results were strongly or weakly positive except for the most dilute GP solutions. These findings indicate that EpiDerm™ SIT-MD results correlate with those from the rabbit intracutaneous test and confirm that RhE assays are suitable replacements for animals in evaluating the tissue irritation potential of medical devices.
Toxicology in Vitro | 2017
Helena Kandarova; Silvia Letasiova; Els Adriaens; Robert Guest; Jamin A. Willoughby; A. Drzewiecka; K. Gruszka; Nathalie Alépée; Sandra Verstraelen; An R. Van Rompay
Assessment of acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment for all drivers of classification. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different alternative methods. Here, the results obtained with reconstructed human cornea-like epithelium (RhCE) EpiOcular™ in the EpiOcular time-to-toxicity Tests (Neat and Dilution ET-50 protocols) are presented. The primary aim of this study was to evaluate whether test methods can discriminate chemicals not requiring classification for serious eye damage/eye irritancy (No Category) from chemicals requiring classification and labelling for Category 1 and Category 2. In addition, the predictive capacity in terms of in vivo drivers of classification was investigated. The chemicals were tested in two independent runs by MatTek In Vitro Life Science Laboratories. Results of this study demonstrate very high specificity of both test protocols. With the existing prediction models described in the SOPs, the specificity of the Neat and Dilution method was 87% and 100%, respectively. The Dilution method was able to correctly predicting 66% of GHS Cat 2 chemicals, however, prediction of GHS Cat 1 chemicals was only 47%-55% using the current protocols. In order to achieve optimal prediction for all three classes, a testing strategy was developed which combines the most predictive time-points of both protocols and for tests liquids and solids separately. Using this new testing strategy, the sensitivity for predicting GHS Cat 1 and GHS Cat 2 chemicals was 73% and 64%, respectively and the very high specificity of 97% was maintained. None of the Cat 1 chemicals was underpredicted as GHS No Category. Further combination of the EpiOcular time-to-toxicity protocols with other validated in vitro systems evaluated in this project, should enable significant reduction and even possible replacement of the animal tests for the final assessment of the irritation potential in all of the GHS classes.
Cancer Letters | 2006
Silvia Letasiova; Sofia Jantova; Lubos Cipak; Marta Muckova
Toxicology in Vitro | 2007
Sona Jantova; Lubos Cipak; Silvia Letasiova