Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Lonardi is active.

Publication


Featured researches published by Silvia Lonardi.


Breast Cancer Research | 2012

STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas

Szeman Ruby Chan; William Vermi; Jingqin Luo; Laura Lucini; Charles G. Rickert; Amy M. Fowler; Silvia Lonardi; Cora D. Arthur; Larry Jt Young; David E. Levy; Michael J. Welch; Robert D. Cardiff; Robert D. Schreiber

IntroductionAlthough breast cancers expressing estrogen receptor-α (ERα) and progesterone receptors (PR) are the most common form of mammary malignancy in humans, it has been difficult to develop a suitable mouse model showing similar steroid hormone responsiveness. STAT transcription factors play critical roles in mammary gland tumorigenesis, but the precise role of STAT1 remains unclear. Herein, we show that a subset of human breast cancers display reduced STAT1 expression and that mice lacking STAT1 surprisingly develop ERα+/PR+ mammary tumors.MethodsWe used a combination of approaches, including histological examination, gene targeted mice, gene expression analysis, tumor transplantaion, and immunophenotyping, to pursue this study.ResultsForty-five percent (37/83) of human ERα+ and 22% (17/78) of ERα- breast cancers display undetectable or low levels of STAT1 expression in neoplastic cells. In contrast, STAT1 expression is elevated in epithelial cells of normal breast tissues adjacent to the malignant lesions, suggesting that STAT1 is selectively downregulated in the tumor cells during tumor progression. Interestingly, the expression levels of STAT1 in the tumor-infiltrating stromal cells remain elevated, indicating that single-cell resolution analysis of STAT1 level in primary breast cancer biopsies is necessary for accurate assessment. Female mice lacking functional STAT1 spontaneously develop mammary adenocarcinomas that comprise > 90% ERα+/PR+ tumor cells, and depend on estrogen for tumor engraftment and progression. Phenotypic marker analyses demonstrate that STAT1-/- mammary tumors arise from luminal epithelial cells, but not myoepithelial cells. In addition, the molecular signature of the STAT1-/- mammary tumors overlaps closely to that of human luminal breast cancers. Finally, introduction of wildtype STAT1, but not a STAT1 mutant lacking the critical Tyr701 residue, into STAT1-/- mammary tumor cells results in apoptosis, demonstrating that the tumor suppressor function of STAT1 is cell-autonomous and requires its transcriptional activity.ConclusionsOur findings demonstrate that STAT1 suppresses mammary tumor formation and its expression is frequently lost during breast cancer progression. Spontaneous mammary tumors that develop in STAT1-/- mice closely recapitulate the progression, ovarian hormone responsiveness, and molecular characteristics of human luminal breast cancer, the most common subtype of human breast neoplasms, and thus represent a valuable platform for testing novel treatments and detection modalities.


Immunobiology | 2009

Cutaneous distribution of plasmacytoid dendritic cells in lupus erythematosus. Selective tropism at the site of epithelial apoptotic damage

William Vermi; Silvia Lonardi; Mauro Morassi; Cristina Rossini; Regina Tardanico; Marina Venturini; Raffaella Sala; Angela Tincani; Pietro Luigi Poliani; Piergiacomo Calzavara-Pinton; Lorenzo Cerroni; Amerigo Santoro; Fabio Facchetti

Recent evidences suggest a significant role of Plasmacytoid dendritic cells (PDC) role in the pathogenesis of lupus erythematosus (LE) via production of type I IFN. Taking advantage on the availability of multiple reagents (CD123, BDCA2, and CD2ap) specifically recognizing PDC on fixed tissues, we investigated the occurrence of PDC in a cohort of 74 LE patients. The large majority of LE biopsies (67/74; 90.5%) showed cutaneous infiltration of PDC. PDC were more frequently observed (96.4 vs 72.2) and numerous in cutaneous LE compared to systemic LE (SLE) and correlated with the density of the inflammatory infiltrate (r=0.40; p<0.001). PDC reduction in SLE might be related to a broader tissue distribution of this cellular population, as indicated by their occurrence in kidneys in 11 out of 24 (45.8%) cases studied. The distribution of cutaneous PDC showed two distinct patterns. More commonly, PDC were observed within perivascular inflammatory nodules in the dermis, associated with CD208+ mature DC and T-bet+ cells [D-PDC]. A second component was observed along the dermal-epithelial junction [J-PDC], in association with cytotoxic T-cells in areas of severe epithelial damage. Notably, chemerin reactivity was observed in 64% of LE biopsies on endothelial cells and in the granular layer keratinocytes. Cutaneous PDC in LE strongly produced type I IFN, as indicated by the diffuse MxA expression, and the cytotoxic molecule granzyme B. This study confirms cutaneous PDC infiltration as hallmark of LE. The topographical segregation in D-PDC and J-PDC suggests a novel view of the role of these cells in skin autoimmunity.


Virchows Archiv | 2007

Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions

Fabio Facchetti; Silvia Lonardi; Francesca Gentili; Luisa Bercich; Marcella Falchetti; Regina Tardanico; Carla Baronchelli; Laura Lucini; Alessandro D. Santin; Bruno Murer

We evaluated the usefulness of the tight-junction associated protein Claudin 4 (CL-4) in the diagnosis of mesothelioma and mimickers, analyzing biopsies from 454 tumors, including 82 mesotheliomas, 336 carcinomas of different origin (278 primary, 58 metastatic to serosae), 36 nonepithelial spindle cell neoplasms, as well as 97 cytological samples from reactive effusions (12), mesothelioma (23) and metastatic carcinomas (62). CL-4 was consistently negative in normal and reactive mesothelium, as well as in all 82 mesotheliomas. In contrast, strong reactivity was found in 57/58 serosal metastasis, and in 245/278 primary carcinomas, with uppermost expression (150/153) in those most frequently involved in the differential with mesothelioma (lung, breast, gastrointestinal tract, pancreas, ovary, primary serous papillary carcinoma of peritoneum). On effusions, reactive and neoplastic mesothelial cells were regularly negative, while metastatic tumor cells stained positively in 60/62 (96.8%) cases. Among spindle cell neoplasms, only 2/9 biphasic synovial sarcomas and 4/4 follicular dendritic cell sarcomas stained positively. Results indicate that CL-4 reacts with the majority of epithelial neoplasms that often metastasize to serous membranes, representing a pancarcinoma marker with extremely high sensitivity and specificity. CL-4 may be considered a primary immunohistochemical reagent to rule out the diagnosis of mesothelioma.


Blood | 2011

Human neutrophils interact with both 6-sulfo LacNAc + DC and NK cells to amplify NK-derived IFNγ: role of CD18, ICAM-1, and ICAM-3

Claudio Costantini; Federica Calzetti; Omar Perbellini; Alessandra Micheletti; Claudia Scarponi; Silvia Lonardi; Martin Pelletier; Knut Schäkel; Giovanni Pizzolo; Fabio Facchetti; William Vermi; Cristina Albanesi; Marco A. Cassatella

The role of neutrophils as key players in the regulation of innate and adaptive immune responses is increasingly being recognized. We report that human neutrophils establish a network with both natural killer (NK) cells and 6-sulfo LacNAc(+) dendritic cells (slanDCs), which ultimately serves to up-regulate NK-derived interferonγ (IFNγ). This network involves direct reciprocal interactions and positive amplification loops mediated by cell-derived cytokines. Accordingly, we show that after lipopolysaccharide + interleukin-2 (IL-2) or IL-15/IL-18 stimulation, neutrophils directly interact with and potentiate the activity of both slanDCs and NK cells. On the one hand, neutrophils augment the release of IL-12p70 by slanDCs via a CD18/ intercellular adhesion molecule-1 (ICAM-1) interaction that stimulates activated NK cells to produce IFNγ. IFNγ further potentiates the interaction between neutrophils and slanDCs and the release of slanDC-derived IL-12p70, thus creating a positive feedback loop. On the other hand, neutrophils directly co-stimulate NK cells via CD18/ICAM-3, leading to the production of IFNγ. Colocalization of neutrophils, NK cells, and slanDCs, as well as of IL-12p70 and IFNγ, in inflamed tissues of Crohn disease and psoriasis provides strong evidence for a novel cellular and cytokine cooperation within the innate immune system in which neutrophils act as amplifiers of NK cell/slanDC-mediated responses.


Modern Pathology | 2015

BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations

Marta Cigognetti; Silvia Lonardi; Piera Balzarini; Vilma Pellegrini; Andrea Tironi; Luisa Bercich; Mattia Bugatti; Giulio Rossi; Bruno Murer; Mattia Barbareschi; Silvia Giuliani; Alberto Cavazza; Gianpietro Marchetti; William Vermi; Fabio Facchetti

The distinction between malignant mesothelioma and reactive mesothelial proliferation can be challenging both on histology and cytology. Recently, variants of the BRCA1-associated protein 1 (BAP1) gene resulting in nuclear protein loss were reported in hereditary and sporadic mesothelioma. Using immunohistochemistry, we evaluated the utility of BAP1 expression in the differential diagnosis between mesothelioma and other mesothelial proliferations on a large series of biopsies that included 212 mesotheliomas, 12 benign mesothelial tumors, and 42 reactive mesothelial proliferations. BAP1 stain was also performed in 70 cytological samples (45 mesotheliomas and 25 reactive mesothelial proliferations). BAP1 was expressed in all benign mesothelial tumors, whereas 139/212 (66%) mesotheliomas were BAP1 negative, especially in epithelioid/biphasic compared with sarcomatoid/desmoplastic subtypes (69% vs 15%). BAP1 loss was homogeneous in neoplastic cells except for two epithelioid mesotheliomas showing tumor heterogeneity. By fluorescence in situ hybridization, BAP1 protein loss was paralleled by homozygous deletion of the BAP1 locus in the vast majority of BAP1-negative tumors (31/41, 76%), whereas 9/10 BAP1-positive mesotheliomas were normal. In biopsies interpreted as reactive mesothelial proliferation BAP1 loss was 100% predictive of malignancy, as all 6 cases subsequently developed BAP1-negative mesothelioma, whereas only 3/36 (8%) BAP1-positive cases progressed to mesothelioma. On cytology/cell blocks, benign mesothelial cells were invariably positive for BAP1, whereas 64% of mesotheliomas showed loss of protein; all 6 cases showing BAP1 negativity were associated with histological diagnosis of BAP1-negative mesothelioma. BAP1 stain also showed utility in the differential of mesothelioma from most common pleural and peritoneal mimickers, such as lung and ovary carcinomas, with specificity and sensitivity of 99/70% and 100/70%, respectively. Our results show that BAP1 protein is frequently lost in mesothelioma, especially of epithelioid/biphasic subtype and is commonly associated with homozygous BAP1 deletion. BAP1 immunostain represents an excellent biomarker with an unprecedented specificity (100%) in the distinction between benign and malignant mesothelial proliferations. Finding BAP1 loss in mesothelial cells should prompt to immediately reevaluate the patient; moreover, it might be useful in mapping tumor extent and planning surgical resection.


The Journal of Allergy and Clinical Immunology | 2013

Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias

Rui Chen; Silvia Giliani; Gaetana Lanzi; George Mias; Silvia Lonardi; Kerry Dobbs; John P. Manis; Hogune Im; Jennifer E.G. Gallagher; Douglas H. Phanstiel; Ghia Euskirchen; Philippe Lacroute; Keith Bettinger; Daniele Moratto; Katja G. Weinacht; Davide Montin; Eleonora Gallo; Giovanna Mangili; Fulvio Porta; Lucia Dora Notarangelo; Stefania Pedretti; Waleed Al-Herz; Anne Marie Comeau; Russell S. Traister; Sung-Yun Pai; Graziella Carella; Fabio Facchetti; Kari C. Nadeau; Michael Snyder; Luigi D. Notarangelo

BACKGROUND Combined immunodeficiency with multiple intestinal atresias (CID-MIA) is a rare hereditary disease characterized by intestinal obstructions and profound immune defects. OBJECTIVE We sought to determine the underlying genetic causes of CID-MIA by analyzing the exomic sequences of 5 patients and their healthy direct relatives from 5 unrelated families. METHODS We performed whole-exome sequencing on 5 patients with CID-MIA and 10 healthy direct family members belonging to 5 unrelated families with CID-MIA. We also performed targeted Sanger sequencing for the candidate gene tetratricopeptide repeat domain 7A (TTC7A) on 3 additional patients with CID-MIA. RESULTS Through analysis and comparison of the exomic sequence of the subjects from these 5 families, we identified biallelic damaging mutations in the TTC7A gene, for a total of 7 distinct mutations. Targeted TTC7A gene sequencing in 3 additional unrelated patients with CID-MIA revealed biallelic deleterious mutations in 2 of them, as well as an aberrant splice product in the third patient. Staining of normal thymus showed that the TTC7A protein is expressed in thymic epithelial cells, as well as in thymocytes. Moreover, severe lymphoid depletion was observed in the thymus and peripheral lymphoid tissues from 2 patients with CID-MIA. CONCLUSIONS We identified deleterious mutations of the TTC7A gene in 8 unrelated patients with CID-MIA and demonstrated that the TTC7A protein is expressed in the thymus. Our results strongly suggest that TTC7A gene defects cause CID-MIA.


Journal of Clinical Investigation | 2011

RNA sensor–induced type I IFN prevents diabetes caused by a β cell–tropic virus in mice

Stephen A. McCartney; William Vermi; Silvia Lonardi; Cristina Rossini; Karel Otero; Boris Calderon; Susan Gilfillan; Michael S. Diamond; Emil R. Unanue; Marco Colonna

Viral infections have been linked to the onset of type I diabetes (T1D), with viruses postulated to induce disease directly by causing β cell injury and subsequent release of autoantigens and indirectly via the host type I interferon (IFN-I) response triggered by the virus. Consistent with this, resistance to T1D is associated with polymorphisms that impair the function of melanoma differentiation associated gene-5 (MDA5), a sensor of viral RNA that elicits IFN-I responses. In animal models, triggering of another viral sensor, TLR3, has been implicated in diabetes. Here, we found that MDA5 and TLR3 are both required to prevent diabetes in mice infected with encephalomyocarditis virus strain D (EMCV-D), which has tropism for the insulin-producing β cells of the pancreas. Infection of Tlr3-/- mice caused diabetes due to impaired IFN-I responses and virus-induced β cell damage rather than T cell-mediated autoimmunity. Mice lacking just 1 copy of Mda5 developed transient hyperglycemia when infected with EMCV-D, whereas homozygous Mda5-/- mice developed severe cardiac pathology. TLR3 and MDA5 controlled EMCV-D infection and diabetes by acting in hematopoietic and stromal cells, respectively, inducing IFN-I responses at kinetically distinct time points. We therefore conclude that optimal functioning of viral sensors and prompt IFN-I responses are required to prevent diabetes when caused by a virus that infects and damages the β cells of the pancreas.


Journal of Investigative Dermatology | 2011

Spontaneous Regression of Highly Immunogenic Molluscum contagiosum Virus (MCV)-Induced Skin Lesions Is Associated with Plasmacytoid Dendritic Cells and IFN-DC Infiltration

William Vermi; Laura Salogni; Leo Schärer; Heinz Kutzner; Silvano Sozzani; Silvia Lonardi; Cristina Rossini; Piergiacomo Calzavara-Pinton; Philip E. LeBoit; Fabio Facchetti

Molluscum contagiosum virus (MCV) infection induces self-limiting cutaneous lesions in an immunocompetent host that can undergo spontaneous regression preceded by local inflammation. On histology, a large majority of MCV-induced lesions are characterized by islands of hyperplastic epithelium containing infected keratinocytes and surrounded by scarce inflammatory infiltrate. However, spontaneous regression has been associated with the occurrence of a dense inflammatory reaction. By histology and immunohistochemistry, we identified MCV-induced lesions showing a dense inflammatory infiltrate associated with cell death in keratinocytes (inflammatory Molluscum contagiosum (I-MC)). In I-MC, hyperplastic keratinocytes were highly immunogenic as demonstrated by the expression of major histocompatibility complex class I and II molecules. Immune cell infiltration consisted of numerous cytotoxic T cells admixed with natural killer cells and plasmacytoid dendritic cells (PDCs). Accordingly, a type I IFN signature associated with PDC infiltration was demonstrated in both keratinocytes and inflammatory cells. Among the latter, a cell population resembling IFN-DC (CD123(+)CD11c(+)CD16(+)CD14(+)MxA(+)) was identified in proximity to islands of apoptotic keratinocytes. In vitro-generated IFN-DCs expressed a strong cytotoxic signature, as demonstrated by high levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). This study establishes a previously unreported model to underpin the role of innate immune cells in viral immune surveillance.


Cell Reports | 2014

SDF-1 Inhibition Targets the Bone Marrow Niche for Cancer Therapy

Aldo M. Roccaro; Antonio Sacco; Werner Purschke; Michele Moschetta; Klaus Buchner; Christian Maasch; Dirk Zboralski; Stefan Zöllner; Stefan Vonhoff; Yuji Mishima; Patricia Maiso; Michaela R. Reagan; Silvia Lonardi; Marco Ungari; Fabio Facchetti; Dirk Eulberg; Anna Kruschinski; Axel Vater; Giuseppe Rossi; Sven Klussmann; Irene M. Ghobrial

Bone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as multiple myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here, we show that stromal cell-derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis and report on the discovery of the high-affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol). In vivo confocal imaging showed that SDF-1 levels are increased within MM cell-colonized BM areas. Using in vivo murine and xenograft mouse models, we document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces MM cell homing and growth, thereby inhibiting MM disease progression. Targeting of SDF-1 represents a valid strategy for preventing or disrupting colonization of the BM by MM cells.


The Journal of Pathology | 2008

Identification of CXCL13 as a new marker for follicular dendritic cell sarcoma

William Vermi; Silvia Lonardi; Daniela Bosisio; Mariagrazia Uguccioni; Gabriela Danelon; Stefano Pileri; Christopher D. M. Fletcher; Silvano Sozzani; F Zorzi; Gianluigi Arrigoni; Claudio Doglioni; Maurilio Ponzoni; Fabio Facchetti

The homeostatic chemokine CXCL13 is preferentially produced in B‐follicles and is crucial in the lymphoid organ development by attracting B‐lymphocytes that express its selective receptor CXCR5. Follicular dendritic cells (FDCs) have been identified as the main cellular source of this chemokine in lymphoid organs. Recently, genome‐wide approaches have suggested follicular CD4 T‐helper cells (THF) as additional CXCL13 producers in the germinal centre and the neoplastic counterpart of THF (CD4+ tumour T‐cells in angioimmunoblastic T‐cell lymphoma) retains the capability of producing this chemokine. In contrast, no data are available on CXCL13 expression on FDC sarcoma (FDC‐S) cells. By using multiple approaches, we investigated the expression of CXCL13 at mRNA and protein level in reactive and neoplastic FDCs. In reactive lymph nodes and tonsils, CXCL13 protein is mainly expressed by a subset of FDCs in B‐cell follicles. CXCL13 is maintained during FDC transformation, since both dysplastic FDCs from 13 cases of Castlemans disease and neoplastic FDCs from ten cases of FDC‐S strongly and diffusely express this chemokine. This observation was confirmed at mRNA level by using RT‐PCR and in situ hybridization. Of note, no CXCL13 reactivity was observed in a cohort of epithelial and mesenchymal neoplasms potentially mimicking FDC‐S. FDC‐S are commonly associated with a dense intratumoural inflammatory infiltrate and immunohistochemistry showed that these lymphocytes express the CXCL13 receptor CXCR5 and are mainly of mantle zone B‐cell derivation (IgD+ and TCL1+). In conclusion, this study demonstrates that CXCL13 is produced by dysplastic and neoplastic FDCs and can be instrumental in recruiting intratumoural CXCR5+ lymphocytes. In addition to the potential biological relevance of this expression, the use of reagents directed against CXCL13 can be useful to properly identify the origin of spindle cell and epithelioid neoplasms. Copyright

Collaboration


Dive into the Silvia Lonardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Pileri

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge