Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Milana is active.

Publication


Featured researches published by Silvia Milana.


Physical Review B | 2013

Raman spectroscopy of shear and layer breathing modes in multilayer MoS2

X.Y. Zhang; Wenpeng Han; Jiang-Bin Wu; Silvia Milana; Y. Lu; Qiuye Li; A. C. Ferrari; Ping-Heng Tan

We study by Raman scattering the shear and layer breathing modes in multilayer MoS2. These are identified by polarization measurements and symmetry analysis. Their positions change significantly with the number of layers, with different scaling for odd and even layers. A chain model can explain the results, with general applicability to any layered material, allowing a reliable diagnostic of their thickness.


Nature Communications | 2013

Ultrafast collinear scattering and carrier multiplication in graphene

Daniele Brida; Andrea Tomadin; Cristian Manzoni; Yong Jin Kim; A. Lombardo; Silvia Milana; Rahul Nair; K. S. Novoselov; A. C. Ferrari; Giulio Cerullo; Marco Polini

Graphene is emerging as a viable alternative to conventional optoelectronic, plasmonic and nanophotonic materials. The interaction of light with charge carriers creates an out-of-equilibrium distribution, which relaxes on an ultrafast timescale to a hot Fermi-Dirac distribution, that subsequently cools emitting phonons. Although the slower relaxation mechanisms have been extensively investigated, the initial stages still pose a challenge. Experimentally, they defy the resolution of most pump-probe setups, due to the extremely fast sub-100 fs carrier dynamics. Theoretically, massless Dirac fermions represent a novel many-body problem, fundamentally different from Schrödinger fermions. Here we combine pump-probe spectroscopy with a microscopic theory to investigate electron-electron interactions during the early stages of relaxation. We identify the mechanisms controlling the ultrafast dynamics, in particular the role of collinear scattering. This gives rise to Auger processes, including charge multiplication, which is key in photovoltage generation and photodetectors.


Nano Letters | 2013

Controlling subnanometer gaps in plasmonic dimers using graphene

Jan Mertens; Anna Eiden; Daniel O. Sigle; Fumin Huang; A. Lombardo; Zhipei Sun; R. S. Sundaram; Alan Colli; Christos Tserkezis; Javier Aizpurua; Silvia Milana; A. C. Ferrari; Jeremy J. Baumberg

Graphene is used as the thinnest possible spacer between gold nanoparticles and a gold substrate. This creates a robust, repeatable, and stable subnanometer gap for massive plasmonic field enhancements. White light spectroscopy of single 80 nm gold nanoparticles reveals plasmonic coupling between the particle and its image within the gold substrate. While for a single graphene layer, spectral doublets from coupled dimer modes are observed shifted into the near-infrared, these disappear for increasing numbers of layers. These doublets arise from charger-transfer-sensitive gap plasmons, allowing optical measurement to access out-of-plane conductivity in such layered systems. Gating the graphene can thus directly produce plasmon tuning.


Optics Express | 2013

1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler

Rose Mary; Graeme Brown; Stephen J. Beecher; Felice Torrisi; Silvia Milana; Daniel Popa; Tawfique Hasan; Zhipei Sun; Elefterios Lidorikis; Seiki Ohara; A. C. Ferrari; Ajoy K. Kar

We fabricate a saturable absorber mirror by coating a graphene- film on an output coupler mirror. This is then used to obtain Q-switched mode-locking from a diode-pumped linear cavity channel waveguide laser inscribed in Ytterbium-doped Bismuthate Glass. The laser produces 1.06 ps pulses at ~1039 nm, with a 1.5 GHz repetition rate, 48% slope efficiency and 202 mW average output power. This performance is due to the combination of the graphene saturable absorber and the high quality optical waveguides in the laser glass.


Applied Physics Letters | 2013

2 μm solid-state laser mode-locked by single-layer graphene

A.A. Lagatsky; Zhipei Sun; T. S. Kulmala; R. S. Sundaram; Silvia Milana; Felice Torrisi; O. L. Antipov; Y. Lee; Jong Hyun Ahn; C.T.A. Brown; W. Sibbett; A. C. Ferrari

We report a 2 μm ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼410 fs pulses, with a spectral width ∼11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing.


Nano Letters | 2014

Photothermoelectric and Photoelectric Contributions to Light Detection in Metal−Graphene−Metal Photodetectors

Tim J. Echtermeyer; P. S. Nene; Maxim Trushin; R. V. Gorbachev; Anna Eiden; Silvia Milana; Zhipei Sun; John Schliemann; Elefterios Lidorikis; K. S. Novoselov; A. C. Ferrari

Graphenes high mobility and Fermi velocity, combined with its constant light absorption in the visible to far-infrared range, make it an ideal material to fabricate high-speed and ultrabroadband photodetectors. However, the precise mechanism of photodetection is still debated. Here, we report wavelength and polarization-dependent measurements of metal-graphene-metal photodetectors. This allows us to quantify and control the relative contributions of both photothermo- and photoelectric effects, both adding to the overall photoresponse. This paves the way for a more efficient photodetector design for ultrafast operating speeds.


Nano Letters | 2016

On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain

Ilya Goykhman; U. Sassi; Boris Desiatov; Noa Mazurski; Silvia Milana; Domenico De Fazio; Anna Eiden; Jacob B. Khurgin; Joseph Shappir; Uriel Levy; A. C. Ferrari

We report an on-chip integrated metal graphene–silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal–silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics.


ACS Nano | 2016

High Responsivity, Large-Area Graphene/MoS2 Flexible Photodetectors

Domenico De Fazio; Ilya Goykhman; Duhee Yoon; Matteo Bruna; Anna Eiden; Silvia Milana; U. Sassi; Matteo Barbone; Dumitru Dumcenco; Kolyo Marinov; Andras Kis; A. C. Ferrari

We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.5A/W and the internal 570A/W at 642 nm. This is at least 2 orders of magnitude higher than bulk-semiconductor flexible membranes. The photoconductive gain is up to 4 × 105. The photocurrent is in the 0.1–100 μA range. The devices are semitransparent, with 8% absorptance at 642 nm, and are stable upon bending to a curvature of 1.4 cm. These capabilities and the low-voltage operation (<1 V) make them attractive for wearable applications.


ACS Nano | 2015

Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes

Jiang-Bin Wu; Zhixin Hu; Xin Zhang; Wenpeng Han; Yan Lu; Wei Shi; Xiao-Fen Qiao; Mari Ijiäs; Silvia Milana; Wei Ji; A. C. Ferrari; Ping-Heng Tan

Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures.


Optics Express | 2013

Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA.

Meng Zhang; Edmund J. R. Kelleher; T. H. Runcorn; Valery M. Mashinsky; Oleg I. Medvedkov; Evgueni M. Dianov; Daniel Popa; Silvia Milana; Tawfique Hasan; Zhipei Sun; Francesco Bonaccorso; Zhe Jiang; Emmanuel Flahaut; Ben H. Chapman; A. C. Ferrari; S. V. Popov; J.R. Taylor

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 µm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 µm. This simple and robust source of light covers a portion of the atmospheric transmission window.

Collaboration


Dive into the Silvia Milana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Popa

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Lombardo

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Eiden

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

U. Sassi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge