Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Miretti is active.

Publication


Featured researches published by Silvia Miretti.


PLOS ONE | 2008

A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging

Silvia Miretti; Ilaria Roato; Riccardo Taulli; Carola Ponzetto; Michele Cilli; Martina Olivero; Maria Flavia Di Renzo; Laura Godio; Adriana Albini; Paolo Buracco; Riccardo Ferracini

Background Osteosarcoma (OSA) is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c) murine OSA model, using a cell line derived from a spontaneous murine tumor. Methodology The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. Principal Findings Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. Conclusions This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation.


The Journal of Pathology | 2009

met oncogene activation qualifies spontaneous canine osteosarcoma as a suitable pre-clinical model of human osteosarcoma†

Raffaella De Maria; Silvia Miretti; Selina Iussich; Martina Olivero; Emanuela Morello; Andrea Bertotti; James G. Christensen; Roy A. Levine; Paolo Buracco; Maria Flavia Di Renzo

The Met receptor tyrosine kinase (RTK) is aberrantly expressed in human osteosarcoma and is an attractive molecular target for cancer therapy. We studied spontaneous canine osteosarcoma (OSA) as a potential pre‐clinical model for evaluation of Met‐targeted therapies. The canine MET oncogene exhibits 90% homology compared with human MET, indicating that cross‐species functional studies are a viable strategy. Expression and activation of the canine Met receptor were studied utilizing immunohistochemical techniques in 39 samples of canine osteosarcoma, including 35 primary tumours and four metastases. Although the Met RTK is barely detectable in primary culture of canine osteoblasts, high expression of Met protein was observed in 80% of canine osteosarcoma samples acquired from various breeds. Met protein overexpression was also concordant with its activation as indicated by phosphorylation of critical tyrosine residues. In addition, Met was expressed and constitutively activated in canine osteosarcoma cell lines. OSA cells expressing high levels of Met demonstrated activation of downstream transducers, elevated spontaneous motility, and invasiveness which were impaired by both a small molecule inhibitor of Met catalytic activity (PHA‐665752) and met‐specific, stable RNA interference obtained by means of lentiviral vector. Similar to observations in human OSA, these data suggest that Met is commonly overexpressed and activated in canine OSA and that inhibition of Met impairs the invasive and motogenic properties of canine OSA cells. These data implicate Met as a potentially important factor for canine OSA progression and indicate that it represents a viable model to study Met‐targeted therapies. Copyright


BMC Genomics | 2013

Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype

Silvia Miretti; Eugenio Martignani; Paolo Accornero; Mario Baratta

BackgroundIn Piedmontese cattle the double-muscled phenotype is an inherited condition associated to a point mutation in the myostatin (MSTN) gene. The Piedmontese MSTN missense mutation G938A is translated to C313Y myostatin protein. This mutation alters MSTN function as a negative regulator of muscle growth, thereby inducing muscle hypertrophy. MiRNAs could play a role in skeletal muscle hypertrophy modulation by down-regulating gene expression.ResultsAfter identifying a 3′-UTR consensus sequence of several negative and positive modulator genes involved in the skeletal muscle hypertrophy pathway, such as IGF1, IGF1R, PPP3CA, NFATc1, MEF2C, GSK3b, TEAD1 and MSTN, we screened miRNAs matching to it. This analysis led to the identification of miR-27b, miR-132, miR-186 and miR-199b-5p as possible candidates. We collected samples of longissimus thoracis from twenty Piedmontese and twenty Friesian male bovines. In Piedmontese group miR-27b was up-regulated 7.4-fold (p < 0.05). Further, we report that the level of MSTN mRNA was about 5-fold lower in Piedmontese cattle vs Friesian cattle (p < 0.0001) and that less mature MSTN protein was detected in the Piedmontese one (p < 0.0001). Cotransfection of miR-27b and psi-check2 vector with the luciferase reporter gene linked to the bovine wild-type 3′-UTR of MSTN strongly inhibited the luciferase activity (79%, p < 0.0001).ConclusionsThese data demonstrate that bovine MSTN is a specific target of miR-27b and that miRNAs contribute to explain additive phenotypic hypertrophy in Piedmontese cattle selected for the MSTN gene mutation, possibly outlining a more precise genetic signature able to elucidate differences in muscle conformation.


eLife | 2016

Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes

Deborah Morena; Nicola Maestro; Francesca Bersani; Paolo E. Forni; Marcello Francesco Lingua; Valentina Foglizzo; Petar Šćepanović; Silvia Miretti; Alessandro Morotti; Jack F. Shern; Javed Khan; Ugo Ala; Paolo Provero; Valentina Sala; Tiziana Crepaldi; Patrizia Gasparini; Michela Casanova; Andrea Ferrari; Gabriella Sozzi; Roberto Chiarle; Carola Ponzetto; Riccardo Taulli

Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity. DOI: http://dx.doi.org/10.7554/eLife.12116.001


European Journal of Cancer | 2008

Bortezomib-mediated proteasome inhibition as a potential strategy for the treatment of rhabdomyosarcoma

Francesca Bersani; Riccardo Taulli; Paolo Accornero; Alessandro Morotti; Silvia Miretti; Tiziana Crepaldi; Carola Ponzetto

Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, divided into two major histological subtypes, embryonal (ERMS) and alveolar (ARMS). To explore the possibility that the proteasome could be a target of therapeutic value in rhabdomyosarcoma, we treated several RMS cell lines with the proteasome inhibitor bortezomib (Velcade or PS-341) at a concentration of 13-26 nM. RMS cells showed high sensitivity to the drug, whereas no toxic effect was observed in primary human myoblasts. In both ERMS and ARMS cells bortezomib promoted apoptosis, activation of caspase 3 and 7 and induced a dose-dependent reduction of anchorage-independent growth. Furthermore, bortezomib induced activation of the stress response, cell cycle arrest and the reduction of NF-kappaB transcriptional activity. Finally, bortezomib decreased tumour growth and impaired cells viability, proliferation and angiogenesis in a xenograft model of RMS. In conclusion, our data indicate that bortezomib could represent a novel drug against RMS tumours.


Journal of Molecular Endocrinology | 2010

Epidermal growth factor and hepatocyte growth factor cooperate to enhance cell proliferation, scatter, and invasion in murine mammary epithelial cells

Paolo Accornero; Silvia Miretti; Laura Starvaggi Cucuzza; Eugenio Martignani; Mario Baratta

The development of the mammary gland requires an integrated response to specific growth factors and steroid hormones. Hepatocyte growth factor (HGF) and its tyrosine kinase receptor, MET, are expressed and temporally regulated during mammary development and differentiation. Epidermal growth factor receptor (EGFR) and its ligands have also been implicated in mammary gland growth and morphogenesis. Since both cytokines seem to exert a morphogenic program in this tissue, we have investigated the possible concerted action of EGF and HGF on the HC11 cell line, a widely used model of nontumorigenic mammary cells. Western blot analysis indicated that HC11 expressed MET and EGFR, and showed ERK1/2 and AKT activation following HGF or EGF treatment. Analysis by real-time PCR and western blot showed that after an EGF but not HGF or insulin-like growth factor-I treatment, HC11 mammary cells exhibited an increase in MET expression at both the mRNA and protein levels, which was dependent on the AKT pathway. Simultaneous treatment with HGF and EGF increased proliferation, scatter, and invasion as assessed by cell count, cell cycle, scatter, and transwell assays. AKT inhibition did not influence the cooperation on proliferation or invasion after HGF+EGF treatment, while ERK1/2 inhibition abolished MET/EGFR cooperation on proliferation. HGF+EGF treatment increased the duration of ERK1/2 and AKT activation compared to HGF or EGF alone. All these data indicate that a crosstalk between the EGF and HGF pathways in mammary epithelial cells may modulate the development of the mammary gland.


Veterinary Journal | 2015

Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma.

L. Maniscalco; Selina Iussich; Emanuela Morello; Marina Martano; Francesca Gattino; Silvia Miretti; Paolo Accornero; Eugenio Martignani; Raquel Sánchez-Céspedes; Paolo Buracco; Raffaella De Maria

Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma.


Journal of Bone and Mineral Research | 2012

The MET oncogene transforms human primary bone‐derived cells into osteosarcomas by targeting committed osteo‐progenitors

Nadia Dani; Martina Olivero; Katia Mareschi; Marjan Van Duist; Silvia Miretti; Sara Cuvertino; Salvatore Patanè; Raffaele Calogero; Riccardo Ferracini; Katia Scotlandi; Franca Fagioli; Maria Flavia Di Renzo

The MET oncogene is aberrantly overexpressed in human osteosarcomas. We have previously converted primary cultures of human bone‐derived cells into osteosarcoma cells by overexpressing MET. To determine whether MET transforms mesenchymal stem cells or committed progenitor cells, here we characterize distinct MET overexpressing osteosarcoma (MET‐OS) clones using genome‐wide expression profiling, cytometric analysis, and functional assays. All the MET‐OS clones consistently display mesenchymal and stemness markers, but not most of the mesenchymal–stem cell‐specific markers. Conversely, the MET‐OS clones express genes characteristic of early osteoblastic differentiation phases, but not those of late phases. Profiling of mesenchymal stem cells induced to differentiate along osteoblast, adipocyte, and chondrocyte lineages confirms that MET‐OS cells are similar to cells at an initial phase of osteoblastic differentiation. Accordingly, MET‐OS cells cannot differentiate into adipocytes or chondrocytes, but can partially differentiate into osteogenic‐matrix‐producing cells. Moreover, in vitro MET‐OS cells form self‐renewing spheres enriched in cells that can initiate tumors in vivo. MET kinase inhibition abrogates the self‐renewal capacity of MET‐OS cells and allows them to progress toward osteoblastic differentiation. These data show that MET initiates the transformation of a cell population that has features of osteo‐progenitors and suggest that MET regulates self‐renewal and lineage differentiation of osteosarcoma cells.


Clinical Cancer Research | 2008

An In vivo Model of Met-Driven Lymphoma as a Tool to Explore the Therapeutic Potential of Met Inhibitors

Paolo Accornero; Giuseppe Lattanzio; Tony Mangano; Roberto Chiarle; Riccardo Taulli; Francesca Bersani; Paolo E. Forni; Silvia Miretti; Claudio Scuoppo; Walter Dastrù; James G. Christensen; Tiziana Crepaldi; Carola Ponzetto

Purpose: Met, the tyrosine kinase receptor for hepatocyte growth factor, is frequently deregulated in human cancer. Recent evidence indicates that Met amplification may confer resistance to treatments directed toward other receptor tyrosine kinases. Thus, there is a need to develop Met inhibitors into therapeutic tools, to be used alone or in combination with other molecularly targeted drugs. Preclinical validation of Met inhibitors has thus far been done in nude mice bearing cancer cells xenogratfs. A far superior model would be a transgenic line developing spontaneous Met-driven tumors with high penetrance and short latency. Experimental Design: To this end, we introduced into the mouse genome TPR-MET, the oncogenic form of MET. The Tpr-Met protein ensures deregulation of Met signaling because dimerization motifs in the Tpr moiety cause ligand-independent activation of the Met kinase. Results: Here, we describe a TPR-MET transgenic line that develops thymic T-cell lymphoma with full penetrance and very short latency. In the tumors, Tpr-Met and its effectors were phosphorylated. Treatment of tumor-derived T lymphocytes with the selective Met inhibitor PHA-665752 at nanomolar concentrations abolished phosphorylation of Met and downstream effectors and led to caspase-mediated apoptosis. I.v. administration of PHA-665752 to transgenic mice bearing lymphomas in exponential growth phase led to a significant decrease in tumor growth and, in some cases, to tumor regression. Conclusions: Our transgenic line, which within 2 months reliably develops Tpr-Met–driven T-cell lymphoma, represents a valuable tool to explore the efficacy and therapeutic potential of Met kinase inhibitors as anticancer drugs.


Experimental and Molecular Medicine | 2008

Curcuminoid-phospholipid complex induces apoptosis in mammary epithelial cells by STAT-3 signaling

Laura Starvaggi Cucuzza; M. Motta; Silvia Miretti; Paolo Accornero; Mario Baratta

Curcumin (from the rhizome of Curcuma longa) is well documented for its medicinal properties in Indian and Chinese systems of medicine where it is widely used for the treatment of several diseases. Epidemiological observations are suggestive that curcumin consumption may reduce the risk of some form of cancers and provide other protective biological effects in humans. These biological properties have been attributed to curcuminoids that have been widely studied for their anti-inflammatory, anti-angiogenic, antioxidant, wound healing and anti-cancer effects. In this study we have investigated on the effect of a curcumin phospholipid complex on mammary epithelial cell viability. HC11 and BME-UV cell lines, validated models to study biology of normal, not tumoral, mammary epithelial cells, were used to analyse these effects. We report that curcumin acts on STAT-3 signal pathway to reduce cell viability and increase apoptosis evaluated by the the amount of activated caspase 3. Further it reduces MAPK and AKT activations. JSI-124, a STAT-3 inhibitor (100 nM) was able to block the negative effect of curcumin on cell viability and caspase 3 activation. Finally the negative effect of cucumin on cell viability has been impaired in STAT-3i HC11, where STAT-3 protein was greatly reduced by shRNA-interference. These results indicate that curcumin presents a potential adverse effect to normal mammary epithelial cells and that it has a specific effect on signal trasduction in mammary epithelium.

Collaboration


Dive into the Silvia Miretti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge