Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Morbelli is active.

Publication


Featured researches published by Silvia Morbelli.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells

Sabrina Chiesa; Silvia Morbelli; Sara Morando; Michela Massollo; Cecilia Marini; Arinna Bertoni; Francesco Frassoni; Soraya Tabera Bartolomé; Gianmario Sambuceti; Elisabetta Traggiai; Antonio Uccelli

Dendritic cells (DC) are highly specialized antigen-presenting cells characterized by the ability to prime T-cell responses. Mesenchymal stem cells (MSC) are adult stromal progenitor cells displaying immunomodulatory activities including inhibition of DC maturation in vitro. However, the specific impact of MSC on DC functions, upon in vivo administration, has never been elucidated. Here we show that murine MSC impair Toll-like receptor-4 induced activation of DC resulting in the inhibition of cytokines secretion, down-regulation of molecules involved in the migration to the lymph nodes, antigen presentation to CD4+ T cells, and cross-presentation to CD8+ T cells. These effects are associated with the inhibition of phosphorylation of intracellular mitogen-activated protein kinases. Intravenous administration of MSC decreased the number of CCR7 and CD49dβ1 expressing CFSE-labeled DC in the draining lymph nodes and hindered local antigen priming of DO11.10 ovalbumin-specific CD4+ T cells. Upon labeling of DC with technetium-99m hexamethylpropylene amine oxime to follow their in vivo biodistribution, we demonstrated that intravenous injection of MSC blocks, almost instantaneously, the migration of subcutaneously administered ovalbumin-pulsed DC to the draining lymph nodes. These findings indicate that MSC significantly affect DC ability to prime T cells in vivo because of their inability to home to the draining lymph nodes and further confirm MSC potentiality as therapy for immune-mediated diseases.


Brain | 2015

Prevalence and prognosis of Alzheimer's disease at the mild cognitive impairment stage.

Stephanie J.B. Vos; Frans R.J. Verhey; Lutz Frölich; Johannes Kornhuber; Jens Wiltfang; Wolfgang Maier; Oliver Peters; Eckart Rüther; Flavio Nobili; Silvia Morbelli; Giovanni B. Frisoni; Alexander Drzezga; Mira Didic; Bart N.M. van Berckel; Andrew Simmons; Hilkka Soininen; Iwona Kloszewska; Patrizia Mecocci; Magda Tsolaki; Bruno Vellas; Simon Lovestone; Cristina Muscio; Sanna Kaisa Herukka; Eric Salmon; Christine Bastin; Anders Wallin; Arto Nordlund; Alexandre de Mendonça; Dina Silva; Isabel Santana

Three sets of research criteria are available for diagnosis of Alzheimers disease in subjects with mild cognitive impairment: the International Working Group-1, International Working Group-2, and National Institute of Aging-Alzheimer Association criteria. We compared the prevalence and prognosis of Alzheimers disease at the mild cognitive impairment stage according to these criteria. Subjects with mild cognitive impairment (n = 1607), 766 of whom had both amyloid and neuronal injury markers, were recruited from 13 cohorts. We used cognitive test performance and available biomarkers to classify subjects as prodromal Alzheimers disease according to International Working Group-1 and International Working Group-2 criteria and in the high Alzheimers disease likelihood group, conflicting biomarker groups (isolated amyloid pathology or suspected non-Alzheimer pathophysiology), and low Alzheimers disease likelihood group according to the National Institute of Ageing-Alzheimer Association criteria. Outcome measures were the proportion of subjects with Alzheimers disease at the mild cognitive impairment stage and progression to Alzheimers disease-type dementia. We performed survival analyses using Cox proportional hazards models. According to the International Working Group-1 criteria, 850 (53%) subjects had prodromal Alzheimers disease. Their 3-year progression rate to Alzheimers disease-type dementia was 50% compared to 21% for subjects without prodromal Alzheimers disease. According to the International Working Group-2 criteria, 308 (40%) subjects had prodromal Alzheimers disease. Their 3-year progression rate to Alzheimers disease-type dementia was 61% compared to 22% for subjects without prodromal Alzheimers disease. According to the National Institute of Ageing-Alzheimer Association criteria, 353 (46%) subjects were in the high Alzheimers disease likelihood group, 49 (6%) in the isolated amyloid pathology group, 220 (29%) in the suspected non-Alzheimer pathophysiology group, and 144 (19%) in the low Alzheimers disease likelihood group. The 3-year progression rate to Alzheimers disease-type dementia was 59% in the high Alzheimers disease likelihood group, 22% in the isolated amyloid pathology group, 24% in the suspected non-Alzheimer pathophysiology group, and 5% in the low Alzheimers disease likelihood group. Our findings support the use of the proposed research criteria to identify Alzheimers disease at the mild cognitive impairment stage. In clinical settings, the use of both amyloid and neuronal injury markers as proposed by the National Institute of Ageing-Alzheimer Association criteria offers the most accurate prognosis. For clinical trials, selection of subjects in the National Institute of Ageing-Alzheimer Association high Alzheimers disease likelihood group or the International Working Group-2 prodromal Alzheimers disease group could be considered.


Neurobiology of Aging | 2012

Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer Disease Consortium (EADC) project

Silvia Morbelli; Alex Drzezga; Robert Perneczky; Giovanni B. Frisoni; Anna Caroli; Bart N.M. van Berckel; Rik Ossenkoppele; Eric Guedj; Mira Didic; Andrea Brugnolo; Gianmario Sambuceti; Marco Pagani; Eric Salmon; Flavio Nobili

We explored resting-state metabolic connectivity in prodromal Alzheimers disease (pAD) patients and in healthy controls (CTR), through a voxel-wise interregional correlation analysis of 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) by means of statistical parametric mapping. Baseline 18F-fluorodeoxyglucose-positron emission tomography of 36 patients with amnestic mild cognitive impairment who converted to Alzheimers disease (AD) dementia after an average time of 2 years (pAD) and of 105 CTR were processed. The area of hypometabolism in pAD showed less metabolic connectivity in patients than in CTR (autocorrelation and correlation with large temporal and frontal areas, respectively). pAD patients showed limited correlation even in selected nonhypometabolic areas, including the hippocampi and the dorsolateral prefrontal cortex (DLFC). On the contrary, in CTR group correlation was highlighted between hippocampi and precuneus/posterior cingulate and frontal cortex, and between dorsolateral prefrontal cortex and caudate nuclei and parietal cortex. The reduced metabolic connections both in hypometabolic and nonhypometabolic areas in pAD patients suggest that metabolic disconnection (reflecting early diaschisis) may antedate remote hypometabolism (early sign of synaptic degeneration).


Stem Cells | 2009

Diabetes Impairs the Vascular Recruitment of Normal Stem Cells by Oxidant Damage, Reversed by Increases in pAMPK, Heme Oxygenase-1, and Adiponectin

Gianmario Sambuceti; Silvia Morbelli; Luca Vanella; Claudia Kusmic; Cecilia Marini; Michela Massollo; Carla Augeri; Mirko Corselli; Chiara Ghersi; Barbara Chiavarina; Luigi F. Rodella; Antonio L'Abbate; George Drummond; Nader G. Abraham; Francesco Frassoni

Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage.


European Journal of Nuclear Medicine and Molecular Imaging | 2012

Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset

Angelina Cistaro; Maria Consuelo Valentini; Adriano Chiò; Flavio Nobili; Andrea Calvo; Cristina Moglia; Anna Montuschi; Silvia Morbelli; Dario Salmaso; Piercarlo Fania; Giovanna Carrara; Marco Pagani

PurposeTo identify the neurobiological traits of amyotrophic lateral sclerosis (ALS) and to elucidate functional differences between ALS of spinal and bulbar onset. We hypothesized that glucose metabolism distribution might vary between groups.MethodsThe study groups comprised 32 patients with ALS of either bulbar (n = 13) or spinal (n = 19) onset and 22 subjects as controls. They were investigated by [18F]fluorodeoxyglucose (FDG) positron emission tomography (FDG PET), comparing the patient groups with each other and with the controls by statistical parametric mapping.ResultsHighly significant relative increases in glucose metabolism distribution were found in the group comprising all 32 ALS patients as compared with the controls in the bilateral amygdalae, midbrain, pons and cerebellum. Relative hypermetabolism was also found in patients with spinal onset as compared with the controls in the right midbrain. In patients with bulbar onset compared with the controls and with patients with spinal onset, large relatively hypometabolic areas were found in the bilateral frontal cortex, right insula, anterior cingulate, precuneus and inferior parietal lobe. Patients with spinal onset had significantly higher scores in a neuropsychological test assessing verbal fluency compared with patients with bulbar onset.ConclusionThis large FDG PET investigation provided unprecedented evidence of relatively increased metabolism in the amygdalae, midbrain and pons in ALS patients as compared with control subjects, possibly due to local activation of astrocytes and microglia. Highly significant relative decreases in metabolism were found in large frontal and parietal regions in the bulbar onset patients as compared with the spinal onset patients and the controls, suggesting a differential metabolic and neuropsychological state between the two conditions.


The Journal of Nuclear Medicine | 2013

Metabolic Networks Underlying Cognitive Reserve in Prodromal Alzheimer Disease: A European Alzheimer Disease Consortium Project

Silvia Morbelli; Robert Perneczky; Alexander Drzezga; Giovanni B. Frisoni; Anna Caroli; B.N.M. van Berckel; Rik Ossenkoppele; Eric Guedj; Mira Didic; Andrea Brugnolo; Mehrdad Naseri; Gianmario Sambuceti; Marco Pagani; Flavio Nobili

This project aimed to investigate the metabolic basis for resilience to neurodegeneration (cognitive reserve) in highly educated patients with prodromal Alzheimer disease (AD). Methods: Sixty-four patients with amnestic mild cognitive impairment who later converted to AD dementia during follow-up, and 90 controls, underwent brain 18F-FDG PET. Both groups were divided into a poorly educated subgroup (42 controls and 36 prodromal AD patients) and a highly educated subgroup (48 controls and 28 prodromal AD patients). Brain metabolism was first compared between education-matched groups of patients and controls. Then, metabolism was compared between highly and poorly educated prodromal AD patients in both directions to identify regions of high education-related metabolic depression and compensation. The clusters of significant depression and compensation were further used as volumetric regions of interest (ROIs) in a brain interregional correlation analysis in each prodromal AD subgroup to explore metabolic connectivity. All analyses were performed by means of SPM8 (P < 0.001 uncorrected at peak level, P < 0.05 false discovery rate–corrected at cluster level; age, sex, Mini-Mental State Examination score, and center as nuisance). Results: Highly educated prodromal AD patients showed more severe hypometabolism than poorly educated prodromal AD patients in the left inferior and middle temporal gyri and the left middle occipital gyrus (ROI depression). Conversely, they showed relative hypermetabolism in the right inferior, middle, and superior frontal gyri (ROI compensation). The sites of compensation, mainly corresponding to the right dorsolateral prefrontal cortex (DLFC), showed wide metabolic correlations with several cortical areas in both hemispheres (frontotemporal cortex, parahippocampal gyrus, and precuneus) in highly educated prodromal AD patients but not in poorly educated prodromal AD patients. To provide evidence on whether these metabolic correlations represent preservation of the physiologic networks of highly educated control subjects (neural reserve) or rather the recruitment of alternative networks (neural compensation), or a combination of the two, we performed metabolic connectivity analysis of the DLFC in highly educated controls as well. The correlation sites of right DLFC partly overlapped those of highly educated prodromal AD patients but were less extended. Conclusion: The present findings suggest that highly educated prodromal AD patients can cope better with the disease thanks to neural reserve but also to the recruitment of compensatory neural networks in which the right DLFC plays a key role.


Neurology | 2014

Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis

Marco Pagani; Adriano Chiò; Maria Consuelo Valentini; Johanna Öberg; Flavio Nobili; Andrea Calvo; Cristina Moglia; Davide Bertuzzo; Silvia Morbelli; Fabrizio De Carli; Piercarlo Fania; Angelina Cistaro

Objective: We investigated a large sample of patients with amyotrophic lateral sclerosis (ALS) at rest in order to assess the value of 18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) PET as a biomarker to discriminate patients from controls. Methods: A total of 195 patients with ALS and 40 controls underwent brain 18F-FDG-PET, most within 5 months of diagnosis. Spinal and bulbar subgroups of ALS were also investigated. Twenty-five bilateral cortical and subcortical volumes of interest and cerebellum were taken into account, and 18F-FDG uptakes were individually normalized by whole-brain values. Group analyses investigated the ALS-related metabolic changes. Discriminant analysis investigating sensitivity and specificity was performed using the 51 volumes of interest as well as age and sex. Metabolic connectivity was explored by voxel-wise interregional correlation analysis. Results: Hypometabolism was found in frontal, motor, and occipital cortex and hypermetabolism in midbrain, temporal pole, and hippocampus in patients with ALS compared to controls. A similar metabolic pattern was also found in the 2 subgroups. Discriminant analysis showed a sensitivity of 95% and a specificity of 83% in separating patients from controls. Connectivity analysis found a highly significant positive correlation between midbrain and white matter in corticospinal tracts in patients with ALS. Conclusions: 18F-FDG distribution changes in ALS showed a clear pattern of hypometabolism in frontal and occipital cortex and hypermetabolism in midbrain. The latter might be interpreted as the neurobiological correlate of diffuse subcortical gliosis. Discriminant analysis resulted in high sensitivity and specificity in differentiating patients with ALS from controls. Once validated by diseased-control studies, the present methodology might represent a potentially useful biomarker for ALS diagnosis. Classificaton of evidence: This study provides Class III evidence that 18F-FDG-PET accurately distinguishes patients with ALS from normal controls (sensitivity 95.4%, specificity 82.5%).


Cell Cycle | 2013

Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer

Cecilia Marini; Barbara Salani; Michela Massollo; Adriana Amaro; Alessia Isabella Esposito; Anna Maria Orengo; Selene Capitanio; Laura Emionite; Mattia Riondato; Gianluca Bottoni; Cinzia Massara; Simona Boccardo; Marina Fabbi; Cristina Campi; Silvia Ravera; Giovanna Angelini; Silvia Morbelli; Michele Cilli; Renzo Cordera; Mauro Truini; Davide Maggi; Ulrich Pfeffer; Gianmario Sambuceti

Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative breast cancer (MDA-MB-231). The inhibition is selective for these isoforms, as documented by experiments with purified HK I and II as well as with cell lysates. Measurements of 18F-fluoro-deoxyglycose uptake document that it is dose- and time-dependent and powerful enough to virtually abolish glucose consumption despite unchanged availability of membrane glucose transporters. The profound energetic imbalance activates phosphorylation and is subsequently followed by cell death. More importantly, the “in vivo” relevance of this effect is confirmed by studies of orthotopic xenografts of MDA-MB-231 cells in athymic (nu/nu) mice. Administration of high drug doses after tumor development caused an evident tumor necrosis in a time as short as 48 h. On the other hand, 1 mo metformin treatment markedly reduced cancer glucose consumption and growth. Taken together, our results strongly suggest that HK inhibition contributes to metformin therapeutic and preventive potential in breast cancer.


Journal of Neurology | 2008

Brain SPECT in subtypes of mild cognitive impairment Findings from the DESCRIPA multicenter study

Flavio Nobili; Giovanni B. Frisoni; Florence Portet; Frans R.J. Verhey; Guido Rodriguez; Anna Caroli; Jacques Touchon; Piero Calvini; Silvia Morbelli; Fabrizio De Carli; Ugo Paolo Guerra; Laura A. van de Pol; Pieter Jelle Visser

The Development of Screening Guidelines and Clinical Criteria of Predementia Alzheimer’s Disease (DESCRIPA) multicenter study enrolled patients with MCI or subjective cognitive complaints (SUBJ), a part of whom underwent optional brain perfusion SPECT. These patients were classified as SUBJ (n = 23), nonamnestic MCI (naMCI; n = 17) and amnestic MCI (aMCI; n = 40) based on neuropsychology. Twenty healthy subjects formed the control (CTR) group. Volumetric regions of interest (VROI) analysis was performed in six associative cortical areas in each hemisphere. ANOVA for repeated measures, corrected for age and center, showed significant differences between groups (p = 0.01) and VROI (p < 0.0001) with a significant group-region interaction (p = 0.029). In the post hoc comparison, SUBJ did not differ from CTR. aMCI disclosed reduced uptake in the left hippocampus and bilateral temporal cortex (compared with CTR) or in the left hippocampus and bilateral parietal cortex (compared with SUBJ). In the naMCI group, reduced VROI values were found in the bilateral temporal cortex and right frontal cortex. In the comparison between aMCI and naMCI, the former had lower values in the left parietal cortex and precuneus. Discriminant analysis between SUBJ/CTR versus all MCI patients allowed correct allocations in 73 % of cases. Mean VROI values were highly correlated (p < 0.0001) with the learning measure of a verbal memory test, especially in the bilateral precunei and parietal cortex and in the left hippocampus. In a subset of 70 patients, mean VROI values showed a significant correlation (p < 0.05) with the white matter hyperintensities score on MRI. In conclusion, MCI subtypes have different perfusion patterns. The aMCI group exhibited a pattern that is typical of early Alzheimer’s disease, while the naMCI group showed a more anterior pattern of hypoperfusion. Instead, a homogeneous group effect was lacking in SUBJ.


Clinical Neurophysiology | 2005

Resting SPECT-neuropsychology correlation in very mild Alzheimer's disease

Flavio Nobili; Andrea Brugnolo; Piero Calvini; Francesco Copello; Caterina De Leo; Nicola Girtler; Silvia Morbelli; Arnoldo Piccardo; Paolo Vitali; Guido Rodriguez

OBJECTIVE To investigate the relationships between brain function and some of the most frequently impaired cognitive domains in the first stages of Alzheimers disease (AD), we searched for correlation between the scores on 3 neuropsychological tests and brain perfusion, assessed by single photon emission computed tomography (SPECT) in patients with very mild AD. METHODS Twenty-nine consecutive outpatients (mean age 78.2+/-5.5) affected by probable AD in the very mild phase (i.e. with a score > or =20 on the mini-mental state examination, MMSE) underwent brain SPECT with (99m)Tc-ethylcisteinate dimer. For correlative purposes, word list learning (by the selective reminding test, SRT), constructional praxis test (CPT) and visual search test (VST) were chosen a priori out of an extended battery employed to diagnose AD at first patient evaluation. Voxel-based correlation analysis was achieved by statistical parametric mapping (SPM99) with a height threshold of P=0.005. Age, years of education and the MMSE score were inserted in the correlative analysis as confounding variables. RESULTS The SRT score showed correlation with brain perfusion in 3 clusters of the left hemisphere, including the post-central gyrus, the parietal precuneus, the inferior parietal lobule and the middle temporal gyrus, and in one cluster in the right hemisphere including the middle temporal gyrus and the middle occipital gyrus. The CPT score was significantly correlated with brain perfusion in the parietal precuneus and the posterior cingulate gyrus in the left hemisphere, whereas the VST score gave a significant correlation with brain perfusion in a left cluster including the parietal precuneus and the superior temporal gyrus. CONCLUSIONS Cognitive impairment in very mild AD is reflected by brain dysfunction in posterior associative areas, with peculiar topographical differences proper of each domain. The parietal precuneus was a common site of correlation of all 3 neuropsychological tests. This region, together with the posterior cingulate and the superficial posterior temporal-parietal cortex, is thought to be affected by disconnection from the mesial temporal lobe, besides being directly affected by increased oxidative stress and by atrophy as well. The impairment of these areas is thought to contribute to cognitive decline in verbal memory, constructional praxis and visual sustained attention which are indeed among the earliest signs of cognitive impairment in AD. SIGNIFICANCE Assessing the relationships between neuropsychology and brain functional imaging is a key approach to clarify the pathophysiology of cognitive failure in AD; the specificity of these findings in AD remains to be proven through comparison with correlation achieved in matched controls.

Collaboration


Dive into the Silvia Morbelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge