Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sílvia Osuna is active.

Publication


Featured researches published by Sílvia Osuna.


Journal of Physical Chemistry A | 2011

Dispersion Corrections Essential for the Study of Chemical Reactivity in Fullerenes

Sílvia Osuna; Marcel Swart; Miquel Solà

In a previous paper (J. Phys. Chem. A2009, 113, 9721), we analyzed theoretically the Diels-Alder cycloaddition between cyclopentadiene and C(60) for which experimental results on energy barriers and reaction energies are known. One of the main conclusions reached was that the two-layered ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) method provides results very close to the full B3LYP/6-31G(d) ones. Unfortunately, however, both the exothermicity of the reaction and the energy barrier were clearly overestimated by these two methods. In the present work, we analyze the effect of the inclusion of Grimmes dispersion corrections in the energy profile of this reaction. Our results show that these corrections are essential to get results close to the experimental values. In addition, we have performed calculations both with and without dispersion corrections for the Diels-Alder reaction of C(60) and several dienes and for the Diels-Alder cycloaddition of a (5,5) single-walled carbon nanotube and 1,3-cis-butadiene. The results obtained indicate that inclusion of dispersion corrections is compulsory for the study of the chemical reactivity of fullerenes and nanotubes.


ACS Nano | 2013

Scalable and selective dispersion of semiconducting arc-discharged carbon nanotubes by dithiafulvalene/thiophene copolymers for thin film transistors.

Huiliang Wang; Jianguo Mei; Peng Liu; Kristin Schmidt; Gonzalo Jiménez-Osés; Sílvia Osuna; Lei Fang; Christopher J. Tassone; Arjan P. Zoombelt; Anatoliy N. Sokolov; K. N. Houk; Michael F. Toney; Zhenan Bao

We report a simple and scalable method to enrich large quantities of semiconducting arc-discharged single-walled carbon nanotubes (SWNTs) with diameters of 1.1-1.8 nm using dithiafulvalene/thiophene copolymers. Stable solutions of highly individualized and highly enriched semiconducting SWNTs were obtained after a simple sonication and centrifuge process. Molecular dynamics (MD) simulations of polymer backbone interactions with and without side chains indicated that the presence of long alkyl side chains gave rise to the selectivity toward semiconducting tubes, indicating the importance of the roles of the side chains to both solubilize and confer selectivity to the polymers. We found that, by increasing the ratio of thiophene to dithiafulvalene units in the polymer backbone (from pDTFF-1T to pDTFF-3T), we can slightly improve the selectivity toward semiconducting SWNTs. This is likely due to the more flexible backbone of pDTFF-3T that allows the favorable wrapping of SWNTs with certain chirality as characterized by small-angle X-ray scattering. However, the dispersion yield was reduced from pDTFF-1T to pDTFF-3T. MD simulations showed that the reduction is due to the smaller polymer/SWNT contact area, which reduces the dispersion ability of pDTFF-3T. These experimental and modeling results provide a better understanding for future rational design of polymers for sorting SWNTs. Finally, high on/off ratio solution-processed thin film transistors were fabricated from the sorted SWNTs to confirm the selective dispersion of semiconducting arc-discharge SWNTs.


Journal of the American Chemical Society | 2013

Covalently Patterned Graphene Surfaces by a Force-Accelerated Diels–Alder Reaction

Shudan Bian; Amy M. Scott; Yang Cao; Yong Liang; Sílvia Osuna; K. N. Houk; Adam B. Braunschweig

Cyclopentadienes (CPs) with Raman and electrochemically active tags were patterned covalently onto graphene surfaces using force-accelerated Diels-Alder (DA) reactions that were induced by an array of elastomeric tips mounted onto the piezoelectric actuators of an atomic force microscope. These force-accelerated cycloadditions are a feasible route to locally alter the chemical composition of graphene defects and edge sites under ambient atmosphere and temperature over large areas (∼1 cm(2)).


Nature Chemical Biology | 2014

The role of distant mutations and allosteric regulation on LovD active site dynamics

Gonzalo Jiménez-Osés; Sílvia Osuna; Xue Gao; Michael R. Sawaya; Lynne Gilson; Steven J. Collier; Gjalt W. Huisman; Todd O. Yeates; Yi Tang; K. N. Houk

Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF.


Chemical Society Reviews | 2014

The role of aromaticity in determining the molecular structure and reactivity of (endohedral metallo)fullerenes

Marc Garcia-Borràs; Sílvia Osuna; Josep M. Luis; Marcel Swart; Miquel Solà

The encapsulation of metal clusters in endohedral metallofullerenes (EMFs) takes place in cages that in most cases are far from being the most stable isomer in the corresponding hollow fullerenes. There exist several possible explanations for the choice of the hosting cages in EMFs, although the final reasons are actually not totally well understood. Moreover, the reactivity and regioselectivity of (endohedral metallo)fullerenes have in the past decade been shown to be generally dependent on a number of factors, such as the size of the fullerene cage, the type of cluster that is being encapsulated, and the number of electrons that are transferred formally from the cluster to the fullerene cage. Different rationalizations of the observed trends had been proposed, based on bond lengths, pyramidalization angles, shape and energies of (un)occupied orbitals, deformation energies of the cages, or separation distances between the pentagon rings. Recently, in our group we proposed that the quest for the maximum aromaticity (maximum aromaticity criterion) determines the most suitable hosting carbon cage for a given metallic cluster (i.e. EMF stabilization), including those cases where the IPR rule is not fulfilled. Moreover, we suggested that local aromaticity plays a determining role in the reactivity of EMFs, which can be used as a criterion for understanding and predicting the regioselectivity of different reactions such as Diels-Alder cycloadditions or Bingel-Hirsch reactions. This review highlights different aspects of the aromaticity of fullerenes and EMFs, starting from how this can be measured and ending by how it can be used to rationalize and predict their molecular structure and reactivity.


Journal of the American Chemical Society | 2013

Diels–Alder Reactions of Graphene: Computational Predictions of Products and Sites of Reaction

Yang Cao; Sílvia Osuna; Yong Liang; Robert C. Haddon; K. N. Houk

The cycloaddition reactions and noncovalent π interactions of 2,3-dimethoxybutadiene (DMBD), 9-methylanthracene (MeA), tetracyanoethylene (TCNE), and maleic anhydride (MA) with graphene models have been investigated using density functional theory (DFT) calculations. Reaction enthalpies have been obtained to assess the reactivity and selectivity of covalent and noncovalent functionalization. Results indicate that graphene edges may be functionalized by the four reagents through cycloaddition reactions, while the interior regions cannot react. Noncovalent complexation is much more favorable than cycloaddition reactions on interior bonds of graphene. The relative reactivities of different sites in graphene are related to loss of aromaticity and can be predicted using Hückel molecular orbital (HMO) localization energy calculations.


Journal of Physical Chemistry A | 2009

Diels-Alder Reaction between Cyclopentadiene and C60: An Analysis of the Performance of the ONIOM Method for the Study of Chemical Reactivity in Fullerenes and Nanotubes

Sílvia Osuna; Josep Morera; Montserrat Cases; Keiji Morokuma; Miquel Solà

In this article, we theoretically analyze the Diels-Alder cycloaddition between cyclopentadiene and C60 for which experimental results on energy barriers and reaction energies are known. The comparison of the results obtained with the two-layered ONIOM approach using different partitions for the high- and low-level layers with those obtained employing the B3LYP/6-31G(d) method for the entire system allows us to conclude that the partition including a pyracylene unit of C60 in the description of the high-level layer is enough to get excellent results. Using this partition in the two-layered ONIOM approach, we have computed the energy barriers and reaction energies for this Diels-Alder reaction for different functionals, and we have compared them with experimental data. From this comparison, both the ONIOM2(M06-2X/6-31G(d):SVWN/STO-3G) and the M06-2X/6-31G(d)//ONIOM2(B3LYP/6-31G(d):SVWN/STO-3G) methods are recommended as reliable and computationally affordable approaches to be exploited for the study of the chemical reactivity of [6,6]-bonds in fullerenes and nanotubes.


Nature Communications | 2014

Sponge-like molecular cage for purification of fullerenes.

Cristina García-Simón; Marc Garcia-Borràs; Laura Gómez; Teodor Parella; Sílvia Osuna; Jordi Juanhuix; Inhar Imaz; Daniel Maspoch; Xavi Ribas

Since fullerenes are available in macroscopic quantities from fullerene soot, large efforts have been geared toward designing efficient strategies to obtain highly pure fullerenes, which can be subsequently applied in multiple research fields. Here we present a supramolecular nanocage synthesized by metal-directed self-assembly, which encapsulates fullerenes of different sizes. Direct experimental evidence is provided for the 1:1 encapsulation of C60, C70, C76, C78 and C84, and solid state structures for the host-guest adducts with C60 and C70 have been obtained using X-ray synchrotron radiation. Furthermore, we design a washing-based strategy to exclusively extract pure C60 from a solid sample of cage charged with a mixture of fullerenes. These results showcase an attractive methodology to selectively extract C60 from fullerene mixtures, providing a platform to design tuned cages for selective extraction of higher fullerenes. The solid-phase fullerene encapsulation and liberation represent a twist in host-guest chemistry for molecular nanocage structures.


Chemistry: A European Journal | 2008

On the Mechanism of the Thermal Retrocycloaddition of Pyrrolidinofullerenes (Retro-Prato Reaction)

Salvatore Filippone; Marta Izquierdo Barroso; Angel Martín-Domenech; Sílvia Osuna; Miquel Solà; Nazario Martín

In contrast to N-methyl or N-unsubstituted pyrrolidinofullerenes, which efficiently undergo the retrocycloaddition reaction to quantitatively afford pristine fullerene, N-benzoyl derivatives do not give this reaction under the same experimental conditions. To unravel the mechanism of the retrocycloaddition process, trapping experiments of the in-situ thermally generated azomethine ylides, with an efficient dipolarophile were conducted. These experiments afforded the respective cycloadducts as an endo/exo isomeric mixture. Theoretical calculations carried out at the DFT level and by using the two-layered ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) approach underpin the experimental findings and predict that the presence of the dienophile is not a basic requirement for the azomethine ylide to be able to leave the fullerene surface under thermal conditions. Once the 1,3-dipole is generated in the reaction medium, it is efficiently trapped by the dipolarophile (maleic anhydride or N-phenylmaleimide). However, for N-unsubstituted pyrrolidinofullerenes, the participation of the dipolarophile in assisting the 1,3-dipole to leave the fullerene surface throughout the whole reaction pathway is also a plausible mechanism that cannot be ruled out.


Journal of the American Chemical Society | 2014

Why bistetracenes are much less reactive than pentacenes in Diels-Alder reactions with fullerenes

Yang Cao; Yong Liang; Lei Zhang; Sílvia Osuna; Andra-Lisa M. Hoyt; Alejandro L. Briseno; K. N. Houk

The Diels-Alder (DA) reactions of pentacene (PT), 6,13-bis(2-trimethylsilylethynyl)pentacene (TMS-PT), bistetracene (BT), and 8,17-bis(2-trimethylsilylethynyl)bistetracene (TMS-BT) with the [6,6] double bond of [60]fullerene have been investigated by density functional theory calculations. Reaction barriers and free energies have been obtained to assess the effects of frameworks and substituent groups on the DA reactivity and product stability. Calculations indicate that TMS-BT is about 5 orders of magnitude less reactive than TMS-PT in the reactions with [60]fullerene. This accounts for the observed much higher stability of TIPS-BT than TIPS-PT when mixed with PCBM. Surprisingly, calculations predict that the bulky silylethynyl substituents of TMS-PT and TMS-BT have only a small influence on reaction barriers. However, the silylethynyl substituents significantly destabilize the corresponding products due to steric repulsions in the adducts. This is confirmed by experimental results here. Architectures of the polycyclic aromatic hydrocarbons (PAHs) play a crucial role in determining both the DA barrier and the adduct stability. The reactivities of different sites in various PAHs are related to the loss of aromaticity, which can be predicted using the simple Hückel molecular orbital localization energy calculations.

Collaboration


Dive into the Sílvia Osuna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Swart

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. N. Houk

University of California

View shared research outputs
Top Co-Authors

Avatar

Nazario Martín

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salvatore Filippone

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Angel Martín-Domenech

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Marta Izquierdo

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge