Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Panseri is active.

Publication


Featured researches published by Silvia Panseri.


Acta Biomaterialia | 2012

Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite

Anna Tampieri; Teresa D’Alessandro; Monica Sandri; Simone Sprio; Elena Landi; Luca Bertinetti; Silvia Panseri; G. Pepponi; Joerg Goettlicher; Manuel Bañobre-López; J. Rivas

The use of magnetic activation has been proposed to answer the growing need for assisted bone and vascular remodeling during template/scaffold regeneration. With this in mind, a synthesis procedure was developed to prepare bioactive (Fe2+/Fe3+)-doped hydroxyapatite (Fe-HA), endowed with superparamagnetic-like properties. This new class of magnetic hydroxyapatites can be potentially employed to develop new magnetic ceramic scaffolds with enhanced regenerative properties for bone surgery; in addition, magnetic Fe-HA can find application in anticancer therapies, to replace the widely used magnetic iron oxide nanoparticles, whose long-term cytotoxicity was recently found to reach harmful levels. An extensive physicochemical, microstructural and magnetic characterization was performed on the obtained Fe-HA powders, and demonstrated that the simultaneous addition of Fe2+ and Fe3+ ions during apatite nucleation under controlled synthesis conditions induces intrinsic magnetization in the final product, minimizing the formation of magnetite as secondary phase. This result potentially opens new perspectives for biodevices aimed at bone regeneration and for anti-cancer therapies based on hyperthermia.


ACS Nano | 2011

Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords

Fabrizio Gelain; Silvia Panseri; Stefania Antonini; Carla Cunha; Matteo Donegà; Joseph L. Lowery; Francesca Taraballi; Gabriella Cerri; Marcella Montagna; Fausto Baldissera; Angelo L. Vescovi

The destruction and hollowing of entire tissue segments represent an insurmountable barrier to axonal regeneration and therapeutics in chronic spinal cord injury. To circumvent this problem, we engineered neural prosthetics, by assembling electrospun nanofibers and self-assembling peptides into composite guidance channels and transplanted them into the cysts of a postcontusive, chronic spinal cord injury rat model, also providing delivery of proregenerative cytokines. Six months later conspicuous cord reconstruction was observed. The cyst was replaced by newly formed tissue comprising neural and stromal cells. Nerve fibers were interspersed between and inside the guidance channels, spanning the lesion, amidst a well-developed vascular network, basal lamina, and myelin. This was accompanied by a significant improvement in the activity of ascending and descending motor pathways and the global locomotion score. Thus by engineering nanostructured matrices into neuroprosthetics, it is possible to recreate an anatomical, structural, and histological framework, which leads to the replacement of large, hollow tissue gaps in the chronically injured spinal cord, fostering axonal regeneration and neurological recovery.


International Journal of Nanomedicine | 2011

3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds.

Carla Cunha; Silvia Panseri; Omar Villa; Diego Silva; Fabrizio Gelain

Three-dimensional (3D) in vitro models of cell culture aim to fill the gap between the standard two-dimensional cell studies and the in vivo environment. Especially for neural tissue regeneration approaches where there is little regenerative capacity, these models are important for mimicking the extracellular matrix in providing support, allowing the natural flow of oxygen, nutrients, and growth factors, and possibly favoring neural cell regrowth. We have previously demonstrated that a new self-assembling nanostructured biomaterial, based on matrigel, was able to support adult neural stem cell (NSC) culture. In this study, we developed a new 3D cell culture system that takes advantage of the nano- and microfiber assembling process, under physiologic conditions, of these biomaterials. The assembled scaffold forms an intricate and biologically active matrix that displays specifically designed functional motifs: RGD (Arg-Gly-Asp), BMHP1 (bone marrow homing peptide 1), and BMHP2, for the culture of adult NSCs. These scaffolds were prepared at different concentrations, and microscopic examination of the cell-embedded scaffolds showed that NSCs are viable and they proliferate and differentiate within the nanostructured environment of the scaffold. Such a model has the potential to be tailored to develop ad hoc designed peptides for specific cell lines.


Journal of Nanobiotechnology | 2012

Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour

Silvia Panseri; Carla Cunha; Teresa D’Alessandro; Monica Sandri; Gianluca Giavaresi; Maurilio Marcacci; Clark T. Hung; Anna Tampieri

BackgroundSuperparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications.ResultsMNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe2+ and Fe3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity.In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle.ConclusionsThe results of the current study suggest that these novel FeHA MNPs may be particularly relevant for strategies of bone tissue regeneration and open new perspectives for the application of a static magnetic field in a clinical setting of bone replacement, either for diagnostic imaging or magnetic drug delivery.


PLOS ONE | 2012

Magnetic Hydroxyapatite Bone Substitutes to Enhance Tissue Regeneration: Evaluation In Vitro Using Osteoblast-Like Cells and In Vivo in a Bone Defect

Silvia Panseri; Carla Cunha; Teresa D'Alessandro; Monica Sandri; Alessandro Russo; Gianluca Giavaresi; Maurilio Marcacci; Clark T. Hung; Anna Tampieri

In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA) scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.


ACS Applied Materials & Interfaces | 2014

Magnetic Bioinspired Hybrid Nanostructured Collagen–Hydroxyapatite Scaffolds Supporting Cell Proliferation and Tuning Regenerative Process

Anna Tampieri; Michele Iafisco; Monica Sandri; Silvia Panseri; Carla Cunha; Simone Sprio; Elisa Savini; Marc Uhlarz; T. Herrmannsdörfer

A bioinspired mineralization process was applied to develop biomimetic hybrid scaffolds made of (Fe(2+)/Fe(3+))-doped hydroxyapatite nanocrystals nucleated on self-assembling collagen fibers and endowed with super-paramagnetic properties, minimizing the formation of potentially cytotoxic magnetic phases such as magnetite or other iron oxide phases. Magnetic composites were prepared at different temperatures, and the effect of this parameter on the reaction yield in terms of mineralization degree, morphology, degradation, and magnetization was investigated. The influence of scaffold properties on cells was evaluated by seeding human osteoblast-like cells on magnetic and nonmagnetic materials, and differences in terms of viability, adhesion, and proliferation were studied. The synthesis temperature affects mainly the chemical-physical features of the mineral phase of the composites influencing the degradation, the microstructure, and the magnetization values of the entire scaffold and its biological performance. In vitro investigations indicated the biocompatibility of the materials and that the magnetization of the super-paramagnetic scaffolds, induced applying an external static magnetic field, improved cell proliferation in comparison to the nonmagnetic scaffold.


Nanotechnology | 2012

Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications

C Cunha; Silvia Panseri; Daniela Iannazzo; Anna Piperno; Alessandro Pistone; M. Fazio; A Russo; M Marcacci; S. Galvagno

A straightforward technique for functionalization of multiwalled carbon nanotubes (MWCNTs) with magnetite (Fe(3)O(4)) nanoparticles was developed. Iron oxide nanoparticles were deposited on MWCNT surfaces by a deposition-precipitation method using Fe(3+)/Fe(2+) salts precursors in basic solution. The characterizations by HRTEM, XRD, SEM/EDX, AAS and TPR analyses confirmed the successful formation of magnetic iron oxide nanoparticles on the MWCNT surface. Fe(3)O(4)/MWCNT hybrid composites were analysed in vitro by incubation with mesenchymal stem cells for 1, 3 and 7 days, either in the presence or absence of a static magnetic field. Analysis of cell proliferation was performed by the MTT assay, quantification of cellular stress was performed by the Lactate Dehydrogenase assay and analysis of cell morphology was performed by actin immunofluorescence and scanning electron microscopy. Results demonstrate that the introduction of magnetite into the MWCNT structure increases biocompatibility of oxidized MWCNTs. In addition, the presence of a static magnetic field further increases Fe(3)O(4)/MWCNT influence on cell behaviour. These results demonstrate this novel Fe(3)O(4)/MWCNT hybrid composite has good potential for tissue engineering applications.


Journal of Biotechnology | 2011

Biomimesis and biomorphic transformations: new concepts applied to bone regeneration.

Simone Sprio; Andrea Ruffini; Federica Valentini; Teresa D'Alessandro; Monica Sandri; Silvia Panseri; Anna Tampieri

In the last decades the activity of material scientists was more and more directed to the development of biomimetic scaffolds, able to drive and address cell activity towards proper differentiation and the repair of diseased human tissues. In case of bone, this requires the synthesis of three-dimensional constructs able to exchange chemical signals promoting osteogenesis and to progressively be resorbed during the formation and remodelling of new bone. Besides, particularly for the regeneration of extensive portions of bone, a morphological and mechanical biomimesis is also required, to allow cell colonization and formation of a proper vascularization tree. The healing of load-bearing bones also requires scaffolds with a hierarchically organized morphology, to provide improved biomechanical behaviour and allow a proper mechano-transduction of the mechanical stimuli down to the cell level. The present paper is an overview of the current technologies and devices developed in the last decade for the regeneration of bone tissue. In particular, novel biomimetic and biomorphic scaffolds, obtained by the controlled transformation of native ligneous structures, promise to adequately face the problem of obtaining complex hierarchical structures, not achievable otherwise by any currently existing manufacturing techniques.


Bone | 2013

Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds

Silvia Panseri; Alessandro Russo; Maria Sartori; Gianluca Giavaresi; Monica Sandri; Milena Fini; Maria Cristina Maltarello; T. Shelyakova; Alessandro Ortolani; A. Visani; V. Dediu; Anna Tampieri; M. Marcacci

The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface.


Journal of Colloid and Interface Science | 2013

Amino and carboxyl plasma functionalization of collagen films for tissue engineering applications.

Francesca Taraballi; S. Zanini; C. Lupo; Silvia Panseri; Carla Cunha; C. Riccardi; Maurilio Marcacci; M. Campione; Laura Cipolla

Type I collagen films have been functionalized on their surfaces by plasma treatment with carboxyl and amino groups to improve their potential for grafting bioactive molecules. The physico-chemical properties of the plasma-treated films were evaluated and compared to the untreated materials by water contact angle, SEM and AFM. The presence of new functional groups on the film surfaces has been assessed by ATR-FTIR spectra after chemical derivatization. Moreover, the biocompatibility of the plasma-treated films was studied with MG-63 human osteoblast-like cells, evaluating cell proliferation, viability and morphology at 1, 3 and 7 days.

Collaboration


Dive into the Silvia Panseri's collaboration.

Top Co-Authors

Avatar

Anna Tampieri

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Monica Sandri

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Monica Montesi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Simone Sprio

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele Iafisco

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Russo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Andrea Ruffini

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carla Cunha

University of Milano-Bicocca

View shared research outputs
Researchain Logo
Decentralizing Knowledge