Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Paracchini is active.

Publication


Featured researches published by Silvia Paracchini.


American Journal of Human Genetics | 2004

A 77-Kilobase Region of Chromosome 6p22.2 Is Associated with Dyslexia in Families From the United Kingdom and From the United States

Clyde Francks; Silvia Paracchini; Shelley D. Smith; Alex J. Richardson; Thomas S. Scerri; Lon R. Cardon; Angela J. Marlow; I. Laurence MacPhie; Janet Walter; Bruce F. Pennington; Simon E. Fisher; Richard K. Olson; John C. DeFries; John F. Stein; Anthony P. Monaco

Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of approximately 12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability.


American Journal of Human Genetics | 2004

A Large AZFc Deletion Removes DAZ3/DAZ4 and Nearby Genes from Men in Y Haplogroup N

Susana Fernandes; Silvia Paracchini; L.H. Meyer; Giovanna Floridia; Chris Tyler-Smith; Peter H. Vogt

Deletion of the entire AZFc locus on the human Y chromosome leads to male infertility. The functional roles of the individual gene families mapped to AZFc are, however, still poorly understood, since the analysis of the region is complicated by its repeated structure. We have therefore used single-nucleotide variants (SNVs) across approximately 3 Mb of the AZFc sequence to identify 17 AZFc haplotypes and have examined them for deletion of individual AZFc gene copies. We found five individuals who lacked SNVs from a large segment of DNA containing the DAZ3/DAZ4 and BPY2.2/BPY2.3 gene doublets in distal AZFc. Southern blot analyses showed that the lack of these SNVs was due to deletion of the underlying DNA segment. Typing 118 binary Y markers showed that all five individuals belonged to Y haplogroup N, and 15 of 15 independently ascertained men in haplogroup N carried a similar deletion. Haplogroup N is known to be common and widespread in Europe and Asia, and there is no indication of reduced fertility in men with this Y chromosome. We therefore conclude that a common variant of the human Y chromosome lacks the DAZ3/DAZ4 and BPY2.2/BPY2.3 doublets in distal AZFc and thus that these genes cannot be required for male fertility; the gene content of the AZFc locus is likely to be genetically redundant. Furthermore, the observed deletions cannot be derived from the GenBank reference sequence by a single recombination event; an origin by homologous recombination from such a sequence organization must be preceded by an inversion event. These data confirm the expectation that the human Y chromosome sequence and gene complement may differ substantially between individuals and more variations are to be expected in different Y chromosomal haplogroups.


American Journal of Human Genetics | 2004

A predominantly neolithic origin for Y-chromosomal DNA variation in North Africa.

Barbara Arredi; Estella S. Poloni; Silvia Paracchini; Tatiana Zerjal; Dahmani M. Fathallah; Mohamed Makrelouf; Vincenzo Lorenzo Pascali; Andrea Novelletto; Chris Tyler-Smith

We have typed 275 men from five populations in Algeria, Tunisia, and Egypt with a set of 119 binary markers and 15 microsatellites from the Y chromosome, and we have analyzed the results together with published data from Moroccan populations. North African Y-chromosomal diversity is geographically structured and fits the pattern expected under an isolation-by-distance model. Autocorrelation analyses reveal an east-west cline of genetic variation that extends into the Middle East and is compatible with a hypothesis of demic expansion. This expansion must have involved relatively small numbers of Y chromosomes to account for the reduction in gene diversity towards the West that accompanied the frequency increase of Y haplogroup E3b2, but gene flow must have been maintained to explain the observed pattern of isolation-by-distance. Since the estimates of the times to the most recent common ancestor (TMRCAs) of the most common haplogroups are quite recent, we suggest that the North African pattern of Y-chromosomal variation is largely of Neolithic origin. Thus, we propose that the Neolithic transition in this part of the world was accompanied by demic diffusion of Afro-Asiatic-speaking pastoralists from the Middle East.


Behavior Genetics | 2011

Investigation of Dyslexia and SLI Risk Variants in Reading- and Language-Impaired Subjects

Dianne F. Newbury; Silvia Paracchini; Thomas S. Scerri; Laura Winchester; Laura Addis; Alex J. Richardson; Janet Walter; John F. Stein; Joel B. Talcott; Anthony P. Monaco

Dyslexia (or reading disability) and specific language impairment (or SLI) are common childhood disorders that show considerable co-morbidity and diagnostic overlaps and have been suggested to share some genetic aetiology. Recently, genetic risk variants have been identified for SLI and dyslexia enabling the direct evaluation of possible shared genetic influences between these disorders. In this study we investigate the role of variants in these genes (namely MRPL19/C20RF3,ROBO1,DCDC2, KIAA0319, DYX1C1, CNTNAP2, ATP2C2 and CMIP) in the aetiology of SLI and dyslexia. We perform case–control and quantitative association analyses using measures of oral and written language skills in samples of SLI and dyslexic families and cases. We replicate association between KIAA0319 and DCDC2 and dyslexia and provide evidence to support a role for KIAA0319 in oral language ability. In addition, we find association between reading-related measures and variants in CNTNAP2 and CMIP in the SLI families.


Molecular Psychiatry | 2006

Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia.

D Harold; Silvia Paracchini; Thomas S. Scerri; Megan Y. Dennis; Natalie Cope; Gary Hill; Valentina Moskvina; Janet Walter; Alex J. Richardson; Michael John Owen; John F. Stein; Eric D. Green; Michael Conlon O'Donovan; Julie Williams; Anthony P. Monaco

The DYX2 locus on chromosome 6p22.2 is the most replicated region of linkage to developmental dyslexia (DD). Two candidate genes within this region have recently been implicated in the disorder: KIAA0319 and DCDC2. Variants within DCDC2 have shown association with DD in a US and a German sample. However, when we genotyped these specific variants in two large, independent UK samples, we obtained only weak, inconsistent evidence for their involvement in DD. Having previously found evidence that variation in the KIAA0319 gene confers susceptibility to DD, we sought to refine this genetic association by genotyping 36 additional SNPs in the gene. Nine SNPs, predominantly clustered around the first exon, showed the most significant association with DD in one or both UK samples, including rs3212236 in the 5′ flanking region (P=0.00003) and rs761100 in intron 1 (P=0.0004). We have thus refined the region of association with developmental dyslexia to putative regulatory sequences around the first exon of the KIAA0319 gene, supporting the presence of functional mutations that could affect gene expression. Our data also suggests a possible interaction between KIAA0319 and DCDC2, which requires further testing.


American Journal of Human Genetics | 2009

CMIP and ATP2C2 modulate phonological short-term memory in language impairment

Dianne F. Newbury; Laura Winchester; Laura Addis; Silvia Paracchini; Lyn-Louise Buckingham; Ann Clark; Wendy Cohen; Hilary Cowie; Katharina Dworzynski; Andrea Everitt; Ian M. Goodyer; Elizabeth R Hennessy; A. David Kindley; Laura L. Miller; Jamal Nasir; Anne O'Hare; Duncan Shaw; Zoë Simkin; Emily Simonoff; Vicky Slonims; Jocelynne Watson; Jiannis Ragoussis; Simon E. Fisher; Jonathon R. Seckl; Peter J. Helms; Patrick Bolton; Andrew Pickles; Gina Conti-Ramsden; Gillian Baird; Dorothy V. M. Bishop

Specific language impairment (SLI) is a common developmental disorder characterized by difficulties in language acquisition despite otherwise normal development and in the absence of any obvious explanatory factors. We performed a high-density screen of SLI1, a region of chromosome 16q that shows highly significant and consistent linkage to nonword repetition, a measure of phonological short-term memory that is commonly impaired in SLI. Using two independent language-impaired samples, one family-based (211 families) and another selected from a population cohort on the basis of extreme language measures (490 cases), we detected association to two genes in the SLI1 region: that encoding c-maf-inducing protein (CMIP, minP = 5.5 × 10−7 at rs6564903) and that encoding calcium-transporting ATPase, type2C, member2 (ATP2C2, minP = 2.0 × 10−5 at rs11860694). Regression modeling indicated that each of these loci exerts an independent effect upon nonword repetition ability. Despite the consistent findings in language-impaired samples, investigation in a large unselected cohort (n = 3612) did not detect association. We therefore propose that variants in CMIP and ATP2C2 act to modulate phonological short-term memory primarily in the context of language impairment. As such, this investigation supports the hypothesis that some causes of language impairment are distinct from factors that influence normal language variation. This work therefore implicates CMIP and ATP2C2 in the etiology of SLI and provides molecular evidence for the importance of phonological short-term memory in language acquisition.


American Journal of Psychiatry | 2008

Association of the KIAA0319 Dyslexia Susceptibility Gene With Reading Skills in the General Population

Silvia Paracchini; Colin D. Steer; Lyn-Louise Buckingham; Andrew P. Morris; Susan M. Ring; Thomas S. Scerri; John F. Stein; Marcus Pembrey; Jiannis Ragoussis; Jean Golding; Anthony P. Monaco

OBJECTIVE The authors previously identified a haplotype on chromosome 6p22 defined by three single-nucleotide polymorphisms (SNPs) that was associated with dyslexia (reading disability) in two independent samples of families that included at least one sibling with severe reading impairment. The authors also showed that this haplotype is associated with a reduction in expression of the KIAA0319 gene. In addition, a completely independent study detected an association between KIAA0319 markers and reading disability. In the current study, the authors tested whether the KIAA0319 gene influences reading skills in the general population, rather than having an effect restricted to reading disability. METHOD The authors genotyped four SNPs that previously showed association with reading disability in the population of 7-9-year-old children in the Avon Longitudinal Study of Parents and Children (ALSPAC), a large longitudinal cohort for which reading-related phenotypes were available for more than 6,000 individuals. The authors conducted quantitative analysis for both single markers and haplotypes. RESULTS The rs2143340 SNP, which effectively tags the three-SNP risk haplotype, was significantly associated with a test for reading ability. The risk haplotype itself also showed association with poor reading performance, and as in previous research, the association was stronger when the analysis was controlled for IQ. CONCLUSIONS These results both support a role of the KIAA0319 gene in the development of dyslexia and suggest that this gene influences reading ability in the general population. Moreover, the data implicate the three-SNP haplotype and its tagging SNP rs2143340 as genetic risk factors for poor reading performance.


Biological Psychiatry | 2011

DCDC2, KIAA0319 and CMIP are associated with reading-related traits.

Thomas S. Scerri; Andrew P. Morris; Lyn-Louise Buckingham; Dianne F. Newbury; Laura L. Miller; Anthony P. Monaco; Dorothy V. M. Bishop; Silvia Paracchini

Background Several susceptibility genes have been proposed for dyslexia (reading disability; RD) and specific language impairment (SLI). RD and SLI show comorbidity, but it is unclear whether a common genetic component is shared. Methods We have investigated whether candidate genes for RD and SLI affect specific cognitive traits or have broad effect on cognition. We have analyzed common risk variants within RD (MRPL19/C2ORF3, KIAA0319, and DCDC2) and language impairment (CMIP and ATP2C2) candidate loci in the Avon Longitudinal Study of Parents and Children cohort (n = 3725), representing children born in southwest England in the early 1990s. Results We detected associations between reading skills and KIAA0319, DCDC2, and CMIP. We show that DCDC2 is specifically associated with RD, whereas variants in CMIP and KIAA0319 are associated with reading skills across the ability range. The strongest associations were restricted to single-word reading and spelling measures, suggesting that these genes do not extend their effect to other reading and language-related skills. Inclusion of individuals with comorbidity tends to strengthen these associations. Our data do not support MRPL19/C2ORF3 as a locus involved in reading abilities nor CMIP/ATP2C2 as genes regulating language skills. Conclusions We provide further support for the role of KIAA0319 and DCDC2 in contributing to reading abilities and novel evidence that the language-disorder candidate gene CMIP is also implicated in reading processes. Additionally, we present novel data to evaluate the prevalence and comorbidity of RD and SLI, and we recommend not excluding individuals with comorbid RD and SLI when designing genetic association studies for RD.


Journal of Medical Genetics | 2004

Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK

Thomas S. Scerri; Simon E. Fisher; Clyde Francks; Il MacPhie; Silvia Paracchini; Alex J. Richardson; John Stein; Anthony P. Monaco

Developmental dyslexia is diagnosed as a specific impairment in reading ability, despite adequate intelligence and educational opportunity,1 that affects approximately 5% of schoolchildren.2 Much evidence has been accumulated from twin and family based studies to indicate that dyslexia can have a hereditary basis, but that the genetic aetiology is complex, involving multiple risk factors.1–3 Linkage analysis has identified numerous genomic regions that may harbour susceptibility genes influencing dyslexia, including on chromosomes 1, 2, 3, 6, 15, and 18, with varying degrees of reproducibility.1,2 The first of these linkages was reported two decades ago,4 to the centromere of chromosome 15. Although subsequent studies failed to replicate linkage to this specific region,5 there is evidence for linkage elsewhere on chromosome 15, particularly at 15q21 ( DYX1 , OMIM 127700).6,7 Recently, DYX1C1 (also known as EKN1 ) was proposed as the gene underlying the putative effect on 15q21.8 This was initially based on studies of a balanced translocation, t(2;15)(q11;q21), co-segregating with reading problems within a single nuclear family from Finland.9 The 15q21 breakpoint in this family directly disrupts DYX1C1 , in an interval that includes exons 8 and 9 (fig 1). Investigation of DYX1C1 in individuals from 20 additional Finnish families with multiple cases of dyslexia led to the identification of eight single nucleotide polymorphisms (SNPs). Two of these SNPs were found to associate with dyslexia in these families, and in additional Finnish affected cases and controls. It was proposed that these two associated SNPs altered the expression or function of DYX1C1 , one by altering a transcription factor binding site, the other as a result of a premature truncation of the protein product by four amino acids, thereby leading to increased risk of developing dyslexia.8 Figure 1  Location of DYX1C1 on chromosome 15. Top: …


Human Molecular Genetics | 2011

PCSK6 is associated with handedness in individuals with dyslexia

Thomas S. Scerri; William M. Brandler; Silvia Paracchini; Andrew P. Morris; Susan M. Ring; Alex J. Richardson; Joel B. Talcott; John F. Stein; Anthony P. Monaco

Approximately 90% of humans are right-handed. Handedness is a heritable trait, yet the genetic basis is not well understood. Here we report a genome-wide association study for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)]. The most highly associated marker, rs11855415 (P = 4.7 × 10−7), is located within PCSK6. Two independent cohorts with RD show the same trend, with the minor allele conferring greater relative right-hand skill. Meta-analysis of all three RD samples is genome-wide significant (n = 744, P = 2.0 × 10−8). Conversely, in the general population (n = 2666), we observe a trend towards reduced laterality of hand skill for the minor allele (P = 0.0020). These results provide molecular evidence that cerebral asymmetry and dyslexia are linked. Furthermore, PCSK6 is a protease that cleaves the left–right axis determining protein NODAL. Functional studies of PCSK6 promise insights into mechanisms underlying cerebral lateralization and dyslexia.

Collaboration


Dive into the Silvia Paracchini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas S. Scerri

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianne F. Newbury

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce F. Pennington

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Richard K. Olson

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge