Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Pescina is active.

Publication


Featured researches published by Silvia Pescina.


Journal of Pharmacy and Pharmacology | 2010

In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application

Silvia Pescina; Giulio Ferrari; Paolo Govoni; Claudio Macaluso; Cristina Padula; Patrizia Santi; Sara Nicoli

Objectives  Bevacizumab (Avastin) is a recombinant humanized monoclonal antibody used in ophthalmology (off‐label) for the treatment of neovascularization in diseases such as diabetic retinopathy and age‐related macular degeneration (wet form). Bevacizumab is currently administrated by repeated intravitreal injection, which can cause severe complications; a non‐invasive delivery route is therefore desirable. The passive permeation of bevacizumab through isolated human sclera was evaluated and the iontophoretic technique was explored as a method to enhance its transscleral transport in vitro.


European Journal of Pharmaceutical Sciences | 2012

Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery.

Silvia Pescina; Patrizia Santi; Giulio Ferrari; Cristina Padula; Pierugo Cavallini; Paolo Govoni; Sara Nicoli

Trans-scleral delivery is nowadays considered as a possible way to deliver drugs to the posterior segment of the eye. Despite the potentiality of this administration route, there is a lack of fundamental knowledge on the role of the numerous barriers involved. The aim of this work was to develop an easy and cheap ex vivo method to evaluate the barrier properties of the choroid-Bruchs layer and in particular to estimate the role of melanin in drug diffusion through ocular tissues. In vitro binding studies were performed to estimate drug affinity for melanin; model molecules used were methylene blue, propranolol, levofloxacin and methylprednisolone sodium succinate. The ex vivo model set up is based on porcine eye bulbs with light blue iris or brown iris. While the choroid of brown eyes is dark, the choroid of blue eyes is transparent, due to the absence of melanin. Permeation experiments using pigmented and not-pigmented porcine tissues gave the opportunity to discriminate between the barrier role of choroid-Bruchs membrane as such and the barrier role of melanin. Ex vivo permeation experiments can be performed using isolated choroid-Bruchs or the sclera-choroid-Bruchs layer. In this last case, it is possible to take into account also the barrier role of the sclera that tends to decrease the drug concentration at the sclera/choroid interface, thus amplifying the effect of melanin. The data obtained in this paper indicate that for some drugs melanin can really represent a barrier and the effect can imply a lower drug flux or simply a longer lag time depending on the kind of drug and the concentration applied. However, it is a saturable barrier, thus its effect can probably be overtaken by high doses or multiple administrations. The ex vivo model set up can help to refine computational models, to better evaluate the interplay among static, dynamic and metabolic barriers. Additionally, since human eyes display a full range of pigmentation, the model could also be useful to investigate the possible influence of pigmentation phenotype on trans-scleral delivery.


European Journal of Pharmaceutical Sciences | 2011

Effect of formulation factors on the trans-scleral iontophoretic and post-iontophoretic transports of a 40 kDa dextran in vitro

Silvia Pescina; Cristina Padula; Patrizia Santi; Sara Nicoli

The aim of the work was to study in vitro, across isolated porcine sclera and across the trilayer sclera-choroid-Bruchs membrane (SCB), the effect of iontophoresis on the permeation of a 40 kDa dextran (FD-40), chosen as model compound of high molecular weight neutral drugs. In particular, the effect of vehicle composition (in terms of buffering agent and ionic strength) and current intensity (from 0.3 to 4.2 mA, corresponding to 0.5-7 mA cm(-2)) was investigated. Additionally the post-iontophoretic transport of FD-40 through SCB was studied. The results obtained in the present paper confirm the importance of formulation parameters during transscleral iontophoresis of a neutral high molecular weight hydrophilic compound transported by electroosmosis. In particular, ionic strength seems to be the more relevant parameter, while the buffering agent (phosphate vs HEPES) is not relevant. The enhancement obtained increases--although in a stepwise way--with current intensity, after a threshold value of approximately 1.5 mA. However, the real variable to be considered is probably current density (threshold value 2.5 mA cm(-2)) more than intensity, in analogy with transdermal iontophoresis. The inclusion of further static barriers besides the sclera, such as choroid and Bruchs membrane, reduces, as expected, the permeation of FD-40, but iontophoresis is able to significantly promote FD-40 transport also through this more complex barrier, without altering its permeability. Finally, the study of the post-iontophoretic transport highlights the formation of a pronounced FD-40 reservoir inside the sclera. This reservoir permits to obtain in vitro a sustained transscleral flux up to 3 h after current stop. This result could be of interest in the case of a real application, prolonging the enhancement effect also after iontophoresis stop.


Journal of Pharmaceutical Sciences | 2015

Development of a Convenient ex vivo Model for the Study of the Transcorneal Permeation of Drugs: Histological and Permeability Evaluation

Silvia Pescina; Paolo Govoni; Arianna Potenza; Cristina Padula; Patrizia Santi; Sara Nicoli

In this paper, an ex vivo model for the study of the transcorneal permeation of drugs, based on porcine tissues, was evaluated. The setup is characterized by ease of realization, absence of O₂ and CO₂ bubbling and low cost; additionally, the large availability of porcine tissue permits a high throughput. Histological images showed the comparability between porcine and human corneas and confirmed the effectiveness of the isolation procedure. A new de-epithelization procedure based on a thermal approach was also set up to simulate cornea permeability in pathological conditions. The procedure did not affect the integrity of the underlying layers and allowed the characterization of the barrier properties of epithelium and stroma. Six compounds with different physicochemical properties were tested: fluorescein, atenolol, propranolol, diclofenac, ganciclovir and lidocaine. The model highlighted the barrier function played by epithelium toward the diffusion of hydrophilic compounds and the permselectivity with regard to more lipophilic molecules. In particular, positively charged compounds showed a significantly higher transcorneal permeability than negatively charged compounds. The comparability of results with literature data supports the goodness and the robustness of the model, especially taking into account the behavior of fluorescein, which is generally considered a marker of tissue integrity.


Current Topics in Medicinal Chemistry | 2015

Therapeutics and carriers: the dual role of proteins in nanoparticles for ocular delivery.

Silvia Pescina; Fabio Sonvico; Patrizia Santi; Sara Nicoli

Blindness and visual impairment affect millions of people worldwide and have a very important impact on patients quality of life. Proteins and peptides represent nowadays an important therapeutic tool for the treatment of ocular diseases but, despite their potential, have significant limitations, as the administration of protein-based pharmaceuticals represents a real challenge. Moreover, administration of ocular medications is difficult due to the peculiar structure of this organ and the presence of numerous barriers protecting the eye inner structure. Nanoencapsulation of peptides and proteins presents a number of advantages for their ocular delivery since it can protect the drug from metabolic activity, control and sustain the release and increase drug bioavailability after topical or intravitreal administration. In fact, nanoparticulate formulations are contributing to overcome ocular barriers, such as the corneal or the blood-retinal barrier, improve the residence time in the eye, increase local drug level, reduce the drug dosage and showing improved performance when compared to conventional formulations. Besides, proteins have also been proposed for the preparation of nanocarriers intended for ophthalmic administration, since they are highly biocompatible, biodegradable and easily modified to link surface ligands. The present review focuses the attention on the use of proteins in ocular drug delivery nanotechnology: their dual role as both therapeutics and carriers has been critically evaluated and discussed.


Journal of Pharmaceutical Sciences | 2015

Permeation of Proteins, Oligonucleotide and Dextrans Across Ocular Tissues: Experimental Studies and a Literature Update

Silvia Pescina; Paolo Govoni; Maxim Antopolsky; Lasse Murtomäki; Cristina Padula; Patrizia Santi; Sara Nicoli

Proteins and oligonucleotides represent powerful tools for the treatment of several ocular diseases, affecting both anterior and posterior eye segments. Despite the potential of these compounds, their administration remains a challenge. The last years have seen a growing interest for the noninvasive administration of macromolecular drugs, but still there is only little information of their permeability across the different ocular barriers. The aim of this work was to evaluate the permeation of macromolecules of different size, shape and charge across porcine ocular tissues such as the isolated sclera, the choroid Bruchs membrane and the cornea, both intact and de-epitelialized. Permeants used were two proteins (albumin and cytochrome C), an oligonucleotide, two dextrans (4 and 40 kDa) and a monoclonal antibody (bevacizumab). Obtained data and its comparison with the literature highlight the difficulties in predicting the behavior of macromolecules based on their physicochemical properties, because the interplay between the charge, molecular radius and conformation prevent their analysis separately. However, the data can be of great help for a rough evaluation of the feasibility of a noninvasive administration and for building computational models to improve understanding of the interplay among static, dynamic and metabolic barriers in the delivery of macromolecules to the eye.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.

Elena Tratta; Silvia Pescina; Cristina Padula; Patrizia Santi; Sara Nicoli

The aim of this work was to study the penetration of cytochrome c, a positively charged model protein (MW 12.4 kDa, charge at pH 8.2: +9), across different ocular tissues, and to evaluate the potential of iontophoresis to enhance and control the transscleral transport. The passive transport of cytochrome c across the sclera and across the bilayer choroid-Bruchs membrane was evaluated using Franz diffusion cells and porcine tissues. The affinity of cytochrome c for melanin was measured by means of in vitro binding experiments. The iontophoretic (anodal) permeation was studied as a function of donor concentration (from 5 to 70 mg/ml) and current intensity (from 0.9 to 3.5 mA; density from 1.5 to 5.8 mA/cm(2)), and the contribution of electroosmosis on cytochrome c transport was evaluated by using a high molecular weight fluorescent dextran (FD-150, 149 kDa) as neutral marker. Finally, the possibility of tuning cytochrome c permeation rate was investigated on a 70 mg/ml cytochrome c solution, by alternating passive permeation and iontophoresis at different intensities. Cytochrome c permeated the sclera with a passive permeability coefficient of about 2.5 × 10(-6)cm/s, comparable to molecules of similar molecular radius. The choroid-Bruchs layer was an important barrier to penetration, since its presence reduced 5-7 times the amount permeated after 5h, also because of the presence of melanin that binds cytochrome. Iontophoresis (2.9 mA/cm(2)) enhanced cytochrome c penetration across the sclera at all the concentrations tested, increasing about ten times the amount permeated after 2h. The effect was proportional to current density: the enhancement factor (measured on a 10mg/ml solution), resulted 6.0 ± 4.3 (i=0.9 mA; density=1.5 mA/cm(2)), 10.6 ± 4.1 (i=1.75 mA; density=2.9 mA/cm(2)), 33.2 ± 8.3 (i=1.75 mA; density=5.8 mA/cm(2)). Iontophoretic (density=2.9 mA/cm(2)) experiments performed with FD-150, an electroosmotic flow (EO) marker, demonstrated that cytochrome c, at concentration higher that 1mg/ml, dramatically reduced the EO flow and that, despite the high MW, the main mechanism for cytochrome c iontophoretic permeation is electrorepulsion. Finally, by alternating in the same experiment passive permeation and iontophoresis at different current intensities, a precise modulation of cytochrome c release was obtained, thus indicating the possibility of tuning the release as a function of specific therapeutic needs.


European Journal of Pharmaceutical Sciences | 2013

Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides

Silvia Pescina; Maxim Antopolsky; Patrizia Santi; Sara Nicoli; Lasse Murtomäki

Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.


International Journal of Pharmaceutics | 2013

In vitro trans-scleral iontophoresis of methylprednisolone hemisuccinate with short application time and high drug concentration

Silvia Pescina; D. Martini; Patrizia Santi; Cristina Padula; Lasse Murtomäki; Sara Nicoli

Trans-scleral iontophoresis, i.e. the application of small electric current to enhance drug transport across sclera is an option for non-invasive delivery of corticosteroids to the posterior segment of the eye. In this paper, in vitro trans-scleral iontophoresis of methylprednisolone hemisuccinate was investigated using concentrated drug solutions and short application times to mimic the iontophoretic conditions of in vivo studies. The drug at the donor concentration of 45 mg/ml was delivered through isolated porcine sclera under passive and iontophoretic conditions (cathodal, 2.4 mA) for 2-15 min. In a second set of experiments, the drug was delivered for 5 min at current intensities of 0.9-7.2 mA. After donor removal, drug release was followed up to 24 h. The exposure of concentrated solutions to sclera for 2-15 min under passive conditions caused a notable accumulation of drug up to 0.8 mg/cm², the release of which was successively followed for 24 h. In cathodal iontophoresis, the amount of accumulated drug increased proportionally to the charge between 0.3 and 1.44 Coulomb. When the charge was increased to 2.16 Coulomb by increasing the application time or current intensity, no further enhancement was recorded. This behaviour can be ascribed to substantial drug adsorption on the scleral tissue, as demonstrated through streaming potential studies, with the consequent increase of the electroosmotic flow that opposes drug transport. The set up suggested here could help in defining the optimal conditions for in vivo studies with animal models and reducing the number of in vivo experiments.


Journal of Pharmaceutical Sciences | 2013

Drug adsorption on bovine and porcine sclera studied with streaming potential

Lasse Murtomäki; Tuomas Vainikka; Silvia Pescina; Sara Nicoli

The affinity of a drug to a biological membrane can affect the distribution and the availability of the active compound to its target. Adsorption is usually determined with in vitro distribution studies based on partitioning of the drug between buffer and tissue, which have limitations such as the high variability of the uptake data and the need for high accuracy in the measurement of drug concentration. Furthermore, distribution studies yield solute concentrations in the bulk of the tissue, whereas electrokinetic phenomena such as streaming potential and electroosmosis reflect the electric charge density on a membrane surface. Streaming potential thus can be used in studying the conditions, by which the charge sign and density can be regulated. That, in turn, has significance to electroosmotic transport mechanism during iontophoresis. In this communication, the adsorption of model compounds methylprednisolone sodium succinate, propranolol, and cytochrome C on bovine and porcine sclera is determined as a function of their concentration by measuring streaming potential. Both membranes had negative streaming potential, proving that they carry negative charge, but had different values at negative and positive pressure differences, which is addressed to the structural asymmetry of these membranes. Bovine sclera had a clearly higher value of streaming potential, ca. -26 nV/Pa, than porcine sclera, ca. -7 nV/Pa (10 mM NaCl solution). All the model compounds were adsorbed on bovine and porcine sclera already in the millimolar concentration range and can have an impact to electroosmosis during transscleral iontophoresis. The results obtained help to better elucidate the phenomena involved in transscleral transport, both in passive diffusion and in iontophoresis, supporting the future application of iontophoresis to the noninvasive delivery of drugs to the posterior segment of the human eye.

Collaboration


Dive into the Silvia Pescina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Ferrari

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge