Silvia Picossi
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Picossi.
Molecular Microbiology | 2008
Rafael Pernil; Silvia Picossi; Vicente Mariscal; Antonia Herrero; Enrique Flores
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. Anabaena open reading frames alr4167 and alr3187 encode, respectively, an ATPase subunit, BgtA, and a composite protein bearing periplasmic substrate‐binding and transmembrane domains, BgtB, of an ABC‐type high‐affinity basic amino acid uptake transporter (Bgt). Open reading frame alr4167 is clustered with open reading frames alr4164, alr4165 and alr4166 that encode a periplasmic substrate‐binding protein, NatF, and transmembrane proteins NatG and NatH respectively. The NatF, NatG, NatH and BgtA proteins constitute an ABC‐type uptake transporter for acidic and neutral polar amino acids (N‐II). The Bgt and N‐II transport systems thus share the ATPase subunit, BgtA. These transporters together with the previously characterized ABC‐type uptake transporter for proline and hydrophobic amino acids (N‐I) account for more than 98% of the amino acid transport activity exhibited by Anabaena sp. strain PCC 7120. In contrast to N‐I that is expressed only in vegetative cells, the Bgt and N‐II systems are present in both vegetative cells and heterocysts. Whereas Bgt is dispensable for diazotrophic growth, N‐II appears to contribute together with N‐I to the diazotrophic physiology of this cyanobacterium.
BMC Genomics | 2014
Silvia Picossi; Enrique Flores; Antonia Herrero
BackgroundThe CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress.ResultsIn this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N assimilation and metabolism, and 65% of the binding regions were located intragenically.ConclusionsThe distribution of NtcA-binding sites identified here reveals the largest bacterial regulon described to date. Our results show that NtcA has a much wider role in the physiology of the cell than it has been previously thought, acting both as a global transcriptional regulator and possibly also as a factor influencing the superstructure of the chromosome (and plasmids).
Molecular Microbiology | 2005
Silvia Picossi; María Luz Montesinos; Rafael Pernil; Christiane Lichtlé; Antonia Herrero; Enrique Flores
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can fix N2 in differentiated cells called heterocysts. The products of Anabaena open reading frames (ORFs) all1046, all1047, all1284, alr1834 and all2912 were identified as putative elements of a neutral amino acid permease. Anabaena mutants of these ORFs were strongly affected (1–12% of the wild‐type activity) in the transport of Pro, Phe, Leu and Gly and also impaired (17–30% of the wild‐type activity) in the transport of Ala and Ser. These results identified those ORFs as the nat genes encoding the N‐I neutral amino acid permease. According to amino acid sequence homologies, natA (all1046) and natE (all2912) encode ATPases, natC (all1047) and natD (all1284) encode transmembrane proteins, and natB (alr1834) encodes a periplasmic substrate‐binding protein of an ABC‐type uptake transporter. The natA, natC, natD and natE mutants showed defects in Gln and His uptake that were not observed in the natB mutant suggesting that NatB is not a binding protein for Gln or His. The nat mutants released hydrophobic amino acids to the medium, and amino acid release took place at higher levels in cultures incubated in the absence of combined N than in the presence of nitrate. Alanine was the amino acid released at highest levels, and its release was impaired in a mutant unable to develop heterocysts. The nat mutants were also impaired in diazotrophic growth, with natA, natC, natD and natE mutants showing more severe defects than the natB mutant. Expression of natA and natC, which constitute an operon, natCA, as well as of natB was studied and found to take place in vegetative cells but not in the heterocysts. These results indicate that the N‐I permease is necessary for normal growth of Anabaena sp. strain PCC 7120 on N2, and that this permease has a role in the diazotrophic filament specifically in the vegetative cells.
Environmental Microbiology | 2012
Rocío López-Igual; Silvia Picossi; Javier López-Garrido; Enrique Flores; Antonia Herrero
In the model, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, gene cluster alr2877-alr2880, which encodes an ABC-type transport system, was induced under conditions of carbon limitation and its inactivation impaired the uptake of bicarbonate. Thus, this gene cluster encodes a Cmp bicarbonate transporter. ORF all0862, encoding a LysR-type transcriptional regulator, was expressed under carbon limitation and at higher levels in the absence than in the presence of combined nitrogen, with a positive effect of the N-control transcription factor NtcA. all0862 was expressed from two putative transcription start sites located 164 and 64 bp upstream from the gene respectively. The latter was induced under carbon limitation and was dependent on positive autoregulation by All0862. All0862 was required for the induction of the Cmp bicarbonate transporter, thus representing a CmpR regulator of Anabaena sp. These results show a novel mode of co-regulation by C and N availability through the concerted action of N- and C-responsive transcription factors.
Plant Physiology | 2013
Martin Ekman; Silvia Picossi; Elsie L. Campbell; John C. Meeks; Enrique Flores
The major facilitator superfamily GlcP glucose permease of the symbiont cyanobacterium Nostoc punctiforme is necessary for infection of its plant partner, the hornwort Anthoceros punctatus. In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.
Microbiology | 2013
Meghna Mittal; Kieran B. Pechter; Silvia Picossi; Hyun-Jin Kim; Kathryn O. Kerstein; Abraham L. Sonenshein
The role of the CcpC regulatory protein as a repressor of the genes encoding the tricarboxylic acid branch enzymes of the Krebs cycle (citrate synthase, citZ; aconitase, citB; and isocitrate dehydrogenase, citC) has been established for both Bacillus subtilis and Listeria monocytogenes. In addition, hyperexpression of citB-lacZ reporter constructs in an aconitase null mutant strain has been reported for B. subtilis. We show here that such hyperexpression of citB occurs in L. monocytogenes as well as in B. subtilis and that in both species the hyperexpression is unexpectedly dependent on CcpC. We propose a revision of the existing CcpC-citB regulatory scheme and suggest a mechanism of regulation in which CcpC represses citB expression at low citrate levels and activates citB expression when citrate levels are high.
Life | 2015
Rafael Pernil; Silvia Picossi; Antonia Herrero; Enrique Flores; Vicente Mariscal
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.
Environmental Microbiology | 2015
Silvia Picossi; Enrique Flores; Antonia Herrero
Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.
Journal of Bacteriology | 2009
Meghna Mittal; Silvia Picossi; Abraham L. Sonenshein
Citrate synthase, the first and rate-limiting enzyme of the tricarboxylic acid branch of the Krebs cycle, was shown to be required for de novo synthesis of glutamate and glutamine in Listeria monocytogenes. The citrate synthase (citZ) gene was found to be part of a complex operon with the upstream genes lmo1569 and lmo1568. The downstream isocitrate dehydrogenase (citC) gene appears to be part of the same operon as well. Two promoters were shown to drive citZ expression, a distal promoter located upstream of lmo1569 and a proximal promoter located upstream of the lmo1568 gene. Transcription of citZ from both promoters was regulated by CcpC by interaction with a single site; assays of transcription in vivo and assays of CcpC binding in vitro revealed that CcpC interacts with and represses the proximal promoter that drives expression of the lmo1568, citZ, and citC genes and, by binding to the same site, prevents read-through transcription from the distal, lmo1569 promoter. Expression of the lmo1568 operon was not affected by the carbon source but was repressed during growth in complex medium by addition of glutamine.
Biochimica et Biophysica Acta | 2018
Enrique Flores; Silvia Picossi; Ana Valladares; Antonia Herrero
Filamentous, heterocyst-forming cyanobacteria are among the simplest multicellular systems in Nature. In the absence of combined nitrogen, the filaments consist of vegetative cells that fix CO2 through oxygenic photosynthesis and micro-oxic heterocysts specialized for the fixation of N2 in a proportion of about 10 to 1. The development of a heterocyst-containing filament involves differentiation of vegetative cells into heterocysts in a process that requires a distinct gene expression program. Two transcription factors are strictly required, NtcA and HetR. The CRP-family protein NtcA directly activates the expression of multiple genes during heterocyst differentiation - in some cases assisted by coactivators including HetR - and in mature heterocysts, whereas HetR is needed to build high NtcA levels in differentiating heterocysts and directly activates some particular genes. A few other regulators of gene expression participate at specific differentiation steps, and a specific transcription factor, CnfR, activates nif gene expression under the micro-oxic conditions of the heterocyst.