Silvia Selleri
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silvia Selleri.
American Journal of Pathology | 2004
Cristiano Rumio; Dario Besusso; Marco Palazzo; Silvia Selleri; Lucia Sfondrini; Francesco Dubini; Sylvie Ménard; Andrea Balsari
The release of antimicrobial peptides and growth factors by Paneth cells is thought to play an important role in protecting the small intestine, but the mechanisms involved have remained obscure. Immunohistochemistry and immunofluorescence showed that Paneth cells express Toll-like receptor 9 (TLR9) in the granules. Injection of mice with oligonucleotides containing CpG sequence (CpG-ODNs) led to a down-modulation of TLR9 and a striking decrease in the number of large secretory granules, consistent with degranulation. Moreover CpG-ODN treatment increased resistance to oral challenge with virulent Salmonella typhimurium. Moreover, our findings demonstrate a sentinel role for Paneth cells through TLR9.
Journal of Immunology | 2008
Silvia Gariboldi; Marco Palazzo; Laura Zanobbio; Silvia Selleri; Michele Sommariva; Lucia Sfondrini; Stefano Cavicchini; Andrea Balsari; Cristiano Rumio
In sites of inflammation or tissue injury, hyaluronic acid (HA), ubiquitous in the extracellular matrix, is broken down into low m.w. HA (LMW-HA) fragments that have been reported to activate immunocompetent cells. We found that LMW-HA induces activation of keratinocytes, which respond by producing β-defensin 2. This production is mediated by TLR2 and TLR4 activation and involves a c-Fos-mediated, protein kinase C-dependent signaling pathway. LMW-HA-induced activation of keratinocytes seems not to be accompanied by an inflammatory response, because no production of IL-8, TNF-α, IL-1β, or IL-6 was observed. Ex vivo and in vivo treatments of murine skin with LMW-HA showed a release of mouse β-defensin 2 in all layers of the epidermal compartment. Therefore, the breakdown of extracellular matrix components, for example after injury, stimulates keratinocytes to release β-defensin 2, which protects cutaneous tissue at a time when it is particularly vulnerable to infection. In addition, our observation might be important to open new perspectives in the development of possible topical products containing LMW-HA to improve the release of β-defensins by keratinocytes, thus ameliorating the self-defense of the skin for the protection of cutaneous tissue from infection by microorganisms.
Journal of Immunology | 2007
Marco Palazzo; Andrea Balsari; Anna Rossini; Silvia Selleri; Claudia Calcaterra; Silvia Gariboldi; Laura Zanobbio; Francesca Arnaboldi; Yuri F. Shirai; Graziano Serrao; Cristiano Rumio
Enteroendocrine cells are known primarily for their production of hormones that affect digestion, but they might also be implicated in sensing and neutralizing or expelling pathogens. We evaluate the expression of TLRs and the response to specific agonists in terms of cytokines, defensins, and hormones in enteroendocrine cells. The mouse enteroendocrine cell line STC-1 and C57BL/6 mice are used for in vitro and in vivo studies, respectively. The presence of TLR4, 5, and 9 is investigated by RT-PCR, Western blot, and immunofluorescence analyses. Activation of these receptors is studied evaluating keratinocyte-derived chemokine, defensins, and cholecystokinin production in response to their specific agonists. In this study, we show that the intestinal enteroendocrine cell line STC-1 expresses TLR4, 5, and 9 and releases cholecystokinin upon stimulation with the respective receptor agonists LPS, flagellin, and CpG-containing oligodeoxynucleotides. Release of keratinocyte-derived chemokine and β-defensin 2 was also observed after stimulation of STC-1 cells with the three TLR agonists, but not with fatty acids. Consistent with these in vitro data, mice showed increased serum cholecystokinin levels after oral challenge with LPS, flagellin, or CpG oligodeoxynucleotides. In addition to their response to food stimuli, enteroendocrine cells sense the presence of bacterial Ags through TLRs and are involved in neutralizing intestinal bacteria by releasing chemokines and defensins, and maybe in removing them by releasing hormones such as cholecystokinin, which induces contraction of the muscular tunica, favoring the emptying of the distal small intestine.
Journal of Cellular Physiology | 2006
Cristiano Rumio; Dario Besusso; Francesca Arnaboldi; Marco Palazzo; Silvia Selleri; Silvia Gariboldi; Shizuo Akira; Satoshi Uematsu; Paola Bignami; Valerio Ceriani; Sylvie Ménard; Andrea Balsari
The cell types of the gut expressing Toll‐like receptor 4, which recognizes specifically bacterial lipopolysaccharides, as well as the functionality of this receptor, have remained controversial. We aimed to clarify these issues. Mouse and human intestinal specimens were stained immunohistochemically to detect Toll‐like receptor 4 expression. Smooth muscle and myenteric plexus cells but not enterocytes revealed receptor expression. Murine intestinal smooth muscle and myenteric plexus cells but not enterocytes showed nuclear translocation of nuclear factor‐kappaB after in vivo stimulation with lipopolysaccharide. Moreover, lipopolysaccharide added to human jejunum biopsies free of epithelial cells induced release of interleukin‐8 (IL‐8). We can conclude that Toll‐like receptor 4 is not expressed in epithelial layer, but rather on smooth muscle and myenteric plexus cells and that expression is functional. The expression of Toll‐like receptor 4 on smooth muscle and myenteric plexus cells is consistent with the possibility that these cells are involved in intestinal immune defense; the low or absent expression of Toll‐like receptor 4 on enterocytes might explain the intestinal epithelium hyporesponsiveness to the abundance of LPS in the intestinal lumen. J. Cell. Physiol.
Journal of Immunology | 2008
Sara Deola; Monica C. Panelli; Dragan Maric; Silvia Selleri; Natalia I. Dmitrieva; Ching Y. Voss; Harvey G. Klein; David F. Stroncek; Ena Wang; Francesco M. Marincola
CD8-expressing cytotoxic T cell (CTL) interactions with APCs and helper T cells determine their function and ability to survive. In this study, we describe a novel interaction independent of Ag presentation between activated CTLs and bystander CD19-expressing B lymphocytes. Ag-stimulated CTLs serially engage autologous B lymphocytes through CD27/CD70 contact that promotes their survival and proliferation. Moreover, these interactions induce the release of proinflammatory cytokines that follows two general patterns: 1) an epitope-dependent enhancement of cytokine release, and 2) a previously undiscovered coordinate release of cytokines independent of epitope exposure. The latter includes chemoattractants targeting activated T cells. As a result, activated T cells are attracted to B cells, which exert a “helper” role in lymphatic organs or in areas of inflammation. This observation provides a mechanistic explanation to previously reported experimental observations suggesting that B cells are required for T cell priming in vivo.
Cancer Research | 2005
Graziella Pratesi; Giovanna Petrangolini; Monica Tortoreto; Alessandro Addis; Sara Belluco; Anna Rossini; Silvia Selleri; Cristiano Rumio; Sylvie Ménard; Andrea Balsari
CpG-oligodeoxynucleotides (CpG-ODN) exhibit potent immunostimulatory activity by binding with Toll-like receptor 9 (TLR9). Based on the finding that TLR9 is highly expressed and functional in pancreatic tissue, we evaluated the antitumor effects of chemotherapy combined with CpG-ODNs in the orthotopic mouse model of a human pancreatic tumor xenograft. Chemotherapy consisted of the maximum tolerated dose of gemcitabine (i.v., 100 mg/kg, q3dx4). CpG-ODNs were delivered (i.p., 20 microg/mouse), weekly, after the end of chemotherapy. CpG-ODNs alone had little effect on tumor growth, whereas gemcitabine alone significantly delayed the median time of disease onset (palpable i.p. tumor) and of bulky disease development (extensive peritoneal tumor burden), but did not enhance survival time. When the gemcitabine regimen was followed by administration of the immunostimulator, development of bulky disease was delayed, survival time was significantly improved (median survival time, 106 days; P < 0.02 versus gemcitabine-treated mice). Autoptic examination showed that tumor spread in the peritoneal cavity was reduced to a greater extent than with gemcitabine alone. All treatment regimens were well-tolerated. The use of nude mice excluded a T cell-mediated immune response, whereas the high pancreatic expression of TLR9 might have contributed to the tumor response. The clear improvement of survival observed in an orthotopic murine model of human pancreatic cancer by the combined use of CpG-ODNs with chemotherapy suggests the promise of this therapeutic regimen in the clinical setting.
Cancer Research | 2008
Marianna Sabatino; Yingdong Zhao; Sonia Voiculescu; Alessandro Monaco; Paul D. Robbins; Laszlo Karai; Brian J. Nickoloff; Michele Maio; Silvia Selleri; Francesco M. Marincola; Ena Wang
It is generally accepted that human cancers derive from a mutated single cell. However, the genetic steps characterizing various stages of progression remain unclear. Studying a unique case of metastatic melanoma, we observed that cell lines derived from metachronous metastases arising over a decade retained a central core of genetic stability in spite of divergent phenotypes. In the present study, we expanded our previous observations comparing these autologous cell lines of clonal derivation with allogeneic ones and correlated array comparative genomic hybridization (aCGH) with gene expression profiling to determine their relative contribution to the dynamics of disease progression. aCGH and gene expression profiling were performed on autologous cell lines and allogeneic melanoma cell lines originating from other patients. A striking correlation existed between total extent of genetic imbalances, global transcriptional patterns, and cellular phenotypes. They did not follow a strict temporal progression but stemmed independently at various time points from a central core of genetic stability best explained according to the cancer stem cell hypothesis. Although their contribution was intertwined, genomic imbalances detectable by aCGH contributed only 25% of the transcriptional traits determining autologous tumor distinctiveness. Our study provides important insights about the dynamics of cancer progression and supports the development of targeted anticancer therapies aimed against stable genetic factors that are maintained throughout the end stage of disease.
International Immunology | 2008
Marco Palazzo; Silvia Gariboldi; Laura Zanobbio; Giuseppina F. Dusio; Silvia Selleri; Marzia Bedoni; Andrea Balsari; Cristiano Rumio
Toll-like receptors (TLRs) 4, 5, 7 and 9 belong to a family of proteins that recognize mainly conserved microbial motifs. Though each TLR has a highly specific ability to recognize a particular microbial pattern, recent papers suggest that some ligands are able to affect the expression of different TLRs. In this paper, we have investigated TLR4, 5, 7 and 9 expression, both at mRNA and protein level, following treatment of different intestinal epithelial cell lines with LPS, flagellin, loxiribine, CpG-oligodeoxynucleotide and peptidoglycan, to assess if the different TLR ligands may modulate the expression of the respective TLR and of the unrelated ones. Our results show that a cross-talk exists between TLRs and various ligands, indicating a cross-regulation among these pattern recognition receptors. In particular, TLR4 was generally down-regulated by treatment with ligands other than LPS, while flagellin and unrelated microbial-associated molecular patterns exerted a general stimulatory activity as regards TLR5 expression. Concerning TLR7 and 9, we have observed a more variable behaviour of the various cell lines with the different ligands. Together, our results demonstrate that the expression of TLRs in intestinal cells is highly dynamic and tightly regulated in response to encountered microbial stimuli.
Stem Cells and Development | 2012
Joëlle Gregoire-Gauthier; Silvia Selleri; François Fontaine; Mame Massar Dieng; Natalie Patey; Geneviève Despars; Christian M. Beauséjour; Elie Haddad
Human mesenchymal stromal cells (MSCs) have been successfully utilized for the treatment of refractory graft-versus-host disease (GvHD). Despite the large number of in vitro and in vivo models developed for clarifying their immunomodulatory properties, the mechanism of action of MSCs remains elusive and their efficacy controversial. Here, we tested the ability of cord blood-derived MSCs to alleviate the symptoms of GvHD induced by the injection of human peripheral blood mononuclear cells into NOD/SCID/γc(-) mice. In this in vivo xeno-GvHD model, we demonstrate that a single MSC injection is able to inhibit GvHD in terms of clinical signs and related mortality. We also show that in this model MSCs act by both immunomodulating T-cells and fostering recovery after irradiation. The translational impact of these findings could provide a reliable preclinical model for studying the efficacy, dosage, and time of administration of human MSCs for the prevention of acute GvHD.
Journal of Immunology | 2008
Marco Palazzo; Silvia Gariboldi; Laura Zanobbio; Silvia Selleri; Giuseppina F. Dusio; Valentina Mauro; Anna Rossini; Andrea Balsari; Cristiano Rumio
In this study, we demonstrate the protective effect of the activation of sodium-dependent glucose transporter-1 (SGLT-1) on damages induced by TLR ligands, in intestinal epithelial cells and in a murine model of septic shock. In intestinal epithelial cell lines, glucose inhibited the IL-8/keratinocyte-derived chemokine production and the activation of the TLR-related transcription factor NF-κB stimulated by LPS or CpG-oligodeoxynucleotide. Oral ingestion of glucose was found to protect 100% of mice from lethal endotoxic shock induced by i.p. LPS administration; protection was only observed when glucose was administered orally, not by i.p. route, suggesting the important role of intestinal epithelial cells in this protection. In addition, we observed that the in vivo protection depends on an increase of anti-inflammatory cytokine IL-10. The cornerstone of the observed immunomodulatory and life-saving effects resides in activation of SGLT-1; in fact, the glucose analog 3-O-methyl-d-gluco-pyranose, which induces the transporter activity, but is not metabolized, exerted the same inhibitory effects as glucose both in vitro and in vivo. Thus, we propose that activated SGLT-1, apart from its classical metabolic function, may be a promising target for inhibition of bacteria-induced inflammatory processes and life-saving treatments, assuming a novel role as an immunological player.