Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Torrassa is active.

Publication


Featured researches published by Silvia Torrassa.


Journal of Biological Chemistry | 2008

Heparin Strongly Enhances the Formation of β2-Microglobulin Amyloid Fibrils in the Presence of Type I Collagen

Annalisa Relini; Silvia De Stefano; Silvia Torrassa; Ornella Cavalleri; Alessandra Gliozzi; Sofia Giorgetti; Sara Raimondi; Loredana Marchese; Laura Verga; Antonio Rossi; Monica Stoppini; Vittorio Bellotti

The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of β2-microglobulin (β2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of β2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes β2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7–99 truncated form of β2-m (ΔN6β2-m) that is a ubiquitous constituent of the natural β2-m fibrils. The formation of this β2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.


Journal of Biological Chemistry | 2009

Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway.

Neda Motamedi-Shad; Elodie Monsellier; Silvia Torrassa; Annalisa Relini; Fabrizio Chiti

A number of human diseases are associated with the conversion of proteins from their native state into well defined fibrillar aggregates, depositing in the extracellular space and generally termed amyloid fibrils. Heparan sulfate (HS), a glycosaminoglycan normally present in the extracellular matrix, has been found to be universally associated with amyloid deposits and to promote amyloid fibril formation by all studied protein systems. We have studied the impact of HS on the amyloidogenesis of human muscle acylphosphatase, monitoring the process with an array of techniques, such as normal and stopped-flow far-UV circular dichroism, thioflavin T fluorescence, static and dynamic light scattering, and atomic force microscopy. The results show that HS accelerates the conversion of the studied protein from the native state into the amyloidogenic, yet monomeric, partially folded state. They also indicate that HS does not simply accelerate the conversion of the resulting partially folded state into amyloid species but splits the process into two distinct pathways occurring in parallel: a very fast phase in which HS interacts with a fraction of protein molecules, causing their rapid aggregation into ThT-positive and β-sheet containing oligomers, and a slow phase resulting from the normal aggregation of partially folded molecules that cannot interact with HS. The HS-mediated aggregation pathway is severalfold faster than that observed in the absence of HS. Two aggregation phases are generally observed when proteins aggregate in the presence of HS, underlying the importance of a detailed kinetic analysis to fully understand the effect of this glycosaminoglycan on amyloidogenesis.


Biophysical Journal | 2010

Detection of Populations of Amyloid-Like Protofibrils with Different Physical Properties

Annalisa Relini; Silvia Torrassa; Riccardo Ferrando; Silvia Campioni; Fabrizio Chiti; Alessandra Gliozzi

We used tapping mode atomic force microscopy to study the morphology of the amyloid protofibrils formed at fixed conditions (low pH with high ionic strength) by self-assembly of the N-terminal domain of the hydrogenase maturation factor HypF. Although all protofibrils in the sample share a beaded structure and similar values of height and width, an accurate analysis of contour length and end-to-end distance and the comparison of experimental data with theoretical predictions based on the worm-like chain model show that two different populations of protofibrils are present. These populations are characterized by different physical properties, such as persistence length, bending rigidity and Youngs modulus. Fluorescence quenching measurements on earlier globular intermediates provide an independent evidence of the existence of different populations. The finding that differences in mechanical properties exist even within the same sample of protofibrils indicates the presence of different subpopulations of prefibrillar aggregates with potentially diverse tendencies to react with undesired molecular targets. This study describes a strategy to discriminate between such different subpopulations that are otherwise difficult to identify with conventional analyses.


Journal of Molecular Biology | 2008

Conformational properties of the aggregation precursor state of HypF-N

Silvia Campioni; Maria F. Mossuto; Silvia Torrassa; Giulia Calloni; Patrizia Polverino de Laureto; Annalisa Relini; Angelo Fontana; Fabrizio Chiti

The conversion of specific proteins or protein fragments into insoluble, ordered fibrillar aggregates is a fundamental process in protein chemistry, biology, medicine and biotechnology. As this structural conversion seems to be a property shared by many proteins, understanding the mechanism of this process will be of extreme importance. Here we present a structural characterisation of a conformational state populated at low pH by the N-terminal domain of Escherichia coli HypF. Combining different biophysical and biochemical techniques, including near- and far-UV circular dichroism, intrinsic and 8-anilinonaphthalene-1-sulfonate-derived fluorescence, dynamic light scattering and limited proteolysis, we will show that this state is largely unfolded but contains significant secondary structure and hydrophobic clusters. It also appears to be more compact than a random coil-like state but less organised than a molten globule state. Increase of the total ionic strength of the solution induces aggregation of such a pre-molten globule state into amyloid-like protofibrils, as revealed by thioflavin T fluorescence and atomic force microscopy. These results show that a pre-molten globule state can be, among other possible conformational states, one of the precursor states of amyloid formation. In addition, the possibility of triggering aggregation by modulating the ionic strength of the solution provides one a unique opportunity to study both the initial precursor state and the aggregation process.


Biophysical Journal | 2009

Agitation and High Ionic Strength Induce Amyloidogenesis of a Folded PDZ Domain in Native Conditions

Alessandro Sicorello; Silvia Torrassa; Gemma Soldi; Stefano Gianni; Carlo Travaglini-Allocatelli; Niccolò Taddei; Annalisa Relini; Fabrizio Chiti

Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37 degrees C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular beta-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (DeltaG(U-F)(H2O)). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.


European Biophysics Journal | 2010

Effects of a lipid environment on the fibrillogenic pathway of the N-terminal polypeptide of human apolipoprotein A-I, responsible for in vivo amyloid fibril formation

Daria Maria Monti; Fulvio Guglielmi; Maria Gaia Monti; Flora Cozzolino; Silvia Torrassa; Annalisa Relini; Piero Pucci; Angela Arciello; Renata Piccoli

In amyloidosis associated with apolipoproteinxa0A-I (ApoA-I), heart amyloid deposits are mainly constituted by the 93-residue ApoA-I N-terminal region. A recombinant form of the amyloidogenic polypeptide, named [1-93]ApoA-I, shares conformational properties and aggregation propensity with its natural counterpart. The polypeptide, predominantly in a random coil state at pH 8.0, following acidification to pH 4.0 adopts a helical/molten globule transient state, which leads to formation of aggregates. Here we provide evidence that fibrillogenesis occurs also in physiologic-like conditions. At pH 6.4, [1-93]ApoA-I was found to assume predominantly an α-helical state, which undergoes aggregation at 37°C over time at a lower rate than at pH 4.0. After 7xa0days at pH 6.4, protofibrils were observed by atomic force microscopy (AFM). Using a multidisciplinary approach, including circular dichroism (CD), fluorescence, electrophoretic, and AFM analyses, we investigated the effects of a lipid environment on the conformational state and aggregation propensity of [1-93]ApoA-I. Following addition of the lipid-mimicking detergent Tritonxa0X-100, the polypeptide was found to be in a helical state at both pH 8.0 and 6.4, with no conformational transition occurring upon acidification. These helical conformers are stable and do not generate aggregated species, as observed by AFM after 21xa0days. Similarly, analyses of the effects of cholesterol demonstrated that this natural ApoA-I ligand induces formation of α-helix at physiological concentrations at both pH 8.0 and 6.4. Zwitterionic, positively charged, and negatively charged liposomes were found to affect [1-93]ApoA-I conformation, inducing helical species. Our data support the idea that lipids play a key role in [1-93]ApoA-I aggregation inxa0vivo.


Biomaterials | 2009

Enzymatically active fibrils generated by the self-assembly of the ApoA-I fibrillogenic domain functionalized with a catalytic moiety

Fulvio Guglielmi; Daria Maria Monti; Angela Arciello; Silvia Torrassa; Flora Cozzolino; Piero Pucci; Annalisa Relini; Renata Piccoli

Enzymatically active fibrils were produced by self-assembly of a bifunctional chimeric protein, made up of a fibrillogenic and a catalytic moiety. For this purpose, the fibrillogenic domain of Apolipoprotein A-I (ApoA-I), a 93-residue polypeptide named [1-93]ApoA-I, was functionalized with the enzyme glutathione S-transferase (GST). The fusion protein GST-[1-93]ApoA-I was expressed, isolated to homogeneity and characterized. In the soluble form, GST-[1-93]ApoA-I was found to be fully active as a GST enzyme, and to have high propensity to self-aggregate. Upon incubation for 3 weeks at pH 6.4, insoluble aggregates were generated. Analyzed by AFM, they were found to contain fibrillar structures often organized into large fiber networks. Fibrils were loaded on the membrane of a microfiltration unit and tested for enzymatic activity by filtering the substrate through the fibrillar network. Fibrils were shown to be catalytically active, stable over time and reusable, as no loss of activity was detected when fibrils were repeatedly tested. Our findings suggest that catalytically active fibrils may be of interest for biocatalytic applications in nanobiotechnology.


Journal of Molecular Biology | 2004

Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils.

Annalisa Relini; Silvia Torrassa; Alessandra Gliozzi; Camillo Rosano; Claudio Canale; Martino Bolognesi; Georgia Plakoutsi; Monica Bucciantini; Fabrizio Chiti; Massimo Stefani


Biophysical Journal | 2005

Amyloid Formation of a Protein in the Absence of Initial Unfolding and Destabilization of the Native State

Gemma Soldi; Francesco Bemporad; Silvia Torrassa; Annalisa Relini; Matteo Ramazzotti; Niccolò Taddei; Fabrizio Chiti


Biophysical Journal | 2006

Natively Folded HypF-N and Its Early Amyloid Aggregates Interact with Phospholipid Monolayers and Destabilize Supported Phospholipid Bilayers

Claudio Canale; Silvia Torrassa; Pasquale Rispoli; Annalisa Relini; Monica Bucciantini; Massimo Stefani; Alessandra Gliozzi

Collaboration


Dive into the Silvia Torrassa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Canale

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Angela Arciello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daria Maria Monti

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Flora Cozzolino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Fulvio Guglielmi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gemma Soldi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge