Silviu Maniu
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Silviu Maniu.
knowledge discovery and data mining | 2015
Siyu Lei; Silviu Maniu; Luyi Mo; Reynold Cheng; Pierre Senellart
Social networks are commonly used for marketing purposes. For example, free samples of a product can be given to a few influential social network users (or seed nodes), with the hope that they will convince their friends to buy it. One way to formalize this objective is through the problem of influence maximization (or IM), whose goal is to find the best seed nodes to activate under a fixed budget, so that the number of people who get influenced in the end is maximized. Solutions to IM rely on the influence probability that a user influences another one. However, this probability information may be unavailable or incomplete. In this paper, we study IM in the absence of complete information on influence probability. We call this problem Online Influence Maximization (OIM), since we learn influence probabilities at the same time we run influence campaigns. To solve OIM, we propose a multiple-trial approach, where (1) some seed nodes are selected based on existing influence information; (2) an influence campaign is started with these seed nodes; and (3) user feedback is used to update influence information. We adopt Explore-Exploit strategies, which can select seed nodes using either the current influence probability estimation (exploit), or the confidence bound on the estimation (explore). Any existing IM algorithm can be used in this framework. We also develop an incremental algorithm that can significantly reduce the overhead of handling user feedback information. Our experiments show that our solution is more effective than traditional IM methods on the partial information.
extending database technology | 2015
Yudian Zheng; Reynold Cheng; Silviu Maniu; Luyi Mo
Recent advances in crowdsourcing technologies enable computationally challenging tasks (e.g., sentiment analysis and entity resolution) to be performed by Internet workers, driven mainly by monetary incentives. A fundamental question is: how should workers be selected, so that the tasks in hand can be accomplished successfully and economically? In this paper, we study the Jury Selection Problem (JSP): Given a monetary budget, and a set of decision-making tasks (e.g., “Is Bill Gates still the CEO of Microsoft now?”), return the set of workers (called jury), such that their answers yield the highest “Jury Quality” (or JQ). Existing JSP solutions make use of the Majority Voting (MV) strategy, which uses the answer chosen by the largest number of workers. We show that MV does not yield the best solution for JSP. We further prove that among all voting strategies (including deterministic and randomizedstrategies), BayesianVoting(BV)canoptimallysolveJSP. We then examine how to solve JSP based on BV. This is technically challenging, since computing the JQ with BV is NP-hard. We solve this problem by proposing an approximate algorithm that is computationally efficient. Our approximate JQ computation algorithm is also highly accurate, and its error is proved to be bounded within 1%. We extend our solution by considering the task owner’s “belief” (or prior) on the answers of the tasks. Experiments on synthetic and real datasets show that our new approach is consistently better than the best JSP solution known.
international world wide web conferences | 2015
Changping Meng; Reynold Cheng; Silviu Maniu; Pierre Senellart; Wangda Zhang
The Heterogeneous Information Network (HIN) is a graph data model in which nodes and edges are annotated with class and relationship labels. Large and complex datasets, such as Yago or DBLP, can be modeled as HINs. Recent work has studied how to make use of these rich information sources. In particular, meta-paths, which represent sequences of node classes and edge types between two nodes in a HIN, have been proposed for such tasks as information retrieval, decision making, and product recommendation. Current methods assume meta-paths are found by domain experts. However, in a large and complex HIN, retrieving meta-paths manually can be tedious and difficult. We thus study how to discover meta-paths automatically. Specifically, users are asked to provide example pairs of nodes that exhibit high proximity. We then investigate how to generate meta-paths that can best explain the relationship between these node pairs. Since this problem is computationally intractable, we propose a greedy algorithm to select the most relevant meta-paths. We also present a data structure to enable efficient execution of this algorithm. We further incorporate hierarchical relationships among node classes in our solutions. Extensive experiments on real-world HIN show that our approach captures important meta-paths in an efficient and scalable manner.
conference on information and knowledge management | 2013
Silviu Maniu; Bogdan Cautis
We consider in this paper top-k query answering in social applications, with a focus on social tagging. This problem requires a significant departure from socially agnostic techniques. In a network- aware context, one can (and should) exploit the social links, which can indicate how users relate to the seeker and how much weight their tagging actions should have in the result build-up. We propose algorithms that have the potential to scale to current applications. While the problem has already been considered in previous literature, this was done either under strong simplifying assumptions or under choices that cannot scale to even moderate-size real-world applications. We first revisit a key aspect of the problem, which is accessing the closest or most relevant users for a given seeker. We describe how this can be done on the fly (without any pre- computations) for several possible choices -- arguably the most natural ones -- of proximity computation in a user network. Based on this, our top-k algorithm is sound and complete, addressing the applicability issues of the existing ones. Moreover, it performs significantly better in general and is instance optimal in the case when the search relies exclusively on the social weight of tagging actions. To further address the efficiency needs of online applications, for which the exact search, albeit optimal, may still be expensive, we then consider approximate algorithms. Specifically, these rely on concise statistics about the social network or on approximate shortest-paths computations. Extensive experiments on real-world data from Twitter show that our techniques can drastically improve response time, without sacrificing precision.
IEEE Transactions on Knowledge and Data Engineering | 2016
Yixiang Fang; Reynold Cheng; Wenbin Tang; Silviu Maniu; Xuan S. Yang
Trajectory data are prevalent in systems that monitor the locations of moving objects. In a location-based service, for instance, the positions of vehicles are continuously monitored through GPS; the trajectory of each vehicle describes its movement history. We study joins on two sets of trajectories, generated by two sets
acm conference on hypertext | 2014
Georges Gouriten; Silviu Maniu; Pierre Senellart
M
international conference on multimedia and expo | 2013
Silviu Maniu; Neil O'Hare; Luca Maria Aiello; Luca Chiarandini; Alejandro Jaimes
and
international conference on management of data | 2017
Silviu Maniu; Reynold Cheng; Pierre Senellart
R
Distributed and Parallel Databases | 2015
Reynold Cheng; Silviu Maniu; Pierre Senellart
of moving objects. For each entity in
international conference on data engineering | 2014
Siyu Lei; Xuan S. Yang; Luyi Mo; Silviu Maniu; Reynold Cheng
M