Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simin He is active.

Publication


Featured researches published by Simin He.


Nature Methods | 2012

Identification of cross-linked peptides from complex samples

Bing Yang; Yanjie Wu; Ming Zhu; Sheng-Bo Fan; Jinzhong Lin; Kun Zhang; Shuang Li; Hao Chi; Yu-Xin Li; Hai-Feng Chen; Shukun Luo; Yue-He Ding; Le-Heng Wang; Zhiqi Hao; Li-Yun Xiu; She Chen; Keqiong Ye; Simin He; Meng-Qiu Dong

We have developed pLink, software for data analysis of cross-linked proteins coupled with mass-spectrometry analysis. pLink reliably estimates false discovery rate in cross-link identification and is compatible with multiple homo- or hetero-bifunctional cross-linkers. We validated the program with proteins of known structures, and we further tested it on protein complexes, crude immunoprecipitates and whole-cell lysates. We show that it is a robust tool for protein-structure and protein-protein–interaction studies.


Journal of Proteome Research | 2010

pNovo: De novo Peptide Sequencing and Identification Using HCD Spectra

Hao Chi; Rui-Xiang Sun; Bing Yang; Chun-Qing Song; Le-Heng Wang; Chao Liu; Yan Fu; Zuo-Fei Yuan; Haipeng Wang; Simin He; Meng-Qiu Dong

De novo peptide sequencing has improved remarkably in the past decade as a result of better instruments and computational algorithms. However, de novo sequencing can correctly interpret only approximately 30% of high- and medium-quality spectra generated by collision-induced dissociation (CID), which is much less than database search. This is mainly due to incomplete fragmentation and overlap of different ion series in CID spectra. In this study, we show that higher-energy collisional dissociation (HCD) is of great help to de novo sequencing because it produces high mass accuracy tandem mass spectrometry (MS/MS) spectra without the low-mass cutoff associated with CID in ion trap instruments. Besides, abundant internal and immonium ions in the HCD spectra can help differentiate similar peptide sequences. Taking advantage of these characteristics, we developed an algorithm called pNovo for efficient de novo sequencing of peptides from HCD spectra. pNovo gave correct identifications to 80% or more of the HCD spectra identified by database search. The number of correct full-length peptides sequenced by pNovo is comparable with that obtained by database search. A distinct advantage of de novo sequencing is that deamidated peptides and peptides with amino acid mutations can be identified efficiently without extra cost in computation. In summary, implementation of the HCD characteristics makes pNovo an excellent tool for de novo peptide sequencing from HCD spectra.


Bioinformatics | 2005

pFind: a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry

Dequan Li; Yan Fu; Rui-Xiang Sun; Charles X. Ling; Yonggang Wei; Hu Zhou; Rong Zeng; Qiang Yang; Simin He; Wen Gao

SUMMARY Research in proteomics requires powerful database-searching software to automatically identify protein sequences in a complex protein mixture via tandem mass spectrometry. In this paper, we describe a novel database-searching software system called pFind (peptide/protein Finder), which employs an effective peptide-scoring algorithm that we reported earlier. The pFind server is implemented with the C++ STL, .Net and XML technologies. As a result, high speed and good usability of the software are achieved.


Molecular & Cellular Proteomics | 2009

A Strategy for Precise and Large Scale Identification of Core Fucosylated Glycoproteins

Wei Jia; Zhuang Lu; Yan Fu; Haipeng Wang; Le-Heng Wang; Hao Chi; Zuo-Fei Yuan; Zhaobin Zheng; Lina Song; Huanhuan Han; YiMin Liang; Jinglan Wang; Yun Cai; Yukui Zhang; Yulin Deng; Wantao Ying; Simin He; Xiaohong Qian

Core fucosylation (CF) patterns of some glycoproteins are more sensitive and specific than evaluation of their total respective protein levels for diagnosis of many diseases, such as cancers. Global profiling and quantitative characterization of CF glycoproteins may reveal potent biomarkers for clinical applications. However, current techniques are unable to reveal CF glycoproteins precisely on a large scale. Here we developed a robust strategy that integrates molecular weight cutoff, neutral loss-dependent MS3, database-independent candidate spectrum filtering, and optimization to effectively identify CF glycoproteins. The rationale for spectrum treatment was innovatively based on computation of the mass distribution in spectra of CF glycopeptides. The efficacy of this strategy was demonstrated by implementation for plasma from healthy subjects and subjects with hepatocellular carcinoma. Over 100 CF glycoproteins and CF sites were identified, and over 10,000 mass spectra of CF glycopeptide were found. The scale of identification results indicates great progress for finding biomarkers with a particular and attractive prospect, and the candidate spectra will be a useful resource for the improvement of database searching methods for glycopeptides.


Bioinformatics | 2010

Open MS/MS spectral library search to identify unanticipated post-translational modifications and increase spectral identification rate

Ding Ye; Yan Fu; Rui-Xiang Sun; Haipeng Wang; Zuo-Fei Yuan; Hao Chi; Simin He

Motivation: Identification of post-translationally modified proteins has become one of the central issues of current proteomics. Spectral library search is a new and promising computational approach to mass spectrometry-based protein identification. However, its potential in identification of unanticipated post-translational modifications has rarely been explored. The existing spectral library search tools are designed to match the query spectrum to the reference library spectra with the same peptide mass. Thus, spectra of peptides with unanticipated modifications cannot be identified. Results: In this article, we present an open spectral library search tool, named pMatch. It extends the existing library search algorithms in at least three aspects to support the identification of unanticipated modifications. First, the spectra in library are optimized with the full peptide sequence information to better tolerate the peptide fragmentation pattern variations caused by some modification(s). Second, a new scoring system is devised, which uses charge-dependent mass shifts for peak matching and combines a probability-based model with the general spectral dot-product for scoring. Third, a target-decoy strategy is used for false discovery rate control. To demonstrate the effectiveness of pMatch, a library search experiment was conducted on a public dataset with over 40 000 spectra in comparison with SpectraST, the most popular library search engine. Additional validations were done on four published datasets including over 150 000 spectra. The results showed that pMatch can effectively identify unanticipated modifications and significantly increase spectral identification rate. Availability: http://pfind.ict.ac.cn/pmatch/ Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Journal of Proteome Research | 2013

pNovo+: De Novo Peptide Sequencing Using Complementary HCD and ETD Tandem Mass Spectra

Hao Chi; Hai-Feng Chen; Kun He; Long Wu; Bing Yang; Rui-Xiang Sun; Jianyun Liu; Wen-Feng Zeng; Chun-Qing Song; Simin He; Meng-Qiu Dong

De novo peptide sequencing is the only tool for extracting peptide sequences directly from tandem mass spectrometry (MS) data without any protein database. However, neither the accuracy nor the efficiency of de novo sequencing has been satisfactory, mainly due to incomplete fragmentation information in experimental spectra. Recent advancement in MS technology has enabled acquisition of higher energy collisional dissociation (HCD) and electron transfer dissociation (ETD) spectra of the same precursor. These spectra contain complementary fragmentation information and can be collected with high resolution and high mass accuracy. Taking these advantages, we have developed a new algorithm called pNovo+, which greatly improves the accuracy and speed of de novo sequencing. On tryptic peptides, 86% of the topmost candidate sequences deduced by pNovo+ from HCD + ETD spectral pairs matched the database search results, and the success rate reached 95% if the top three candidates were included, which was much higher than using only HCD (87%) or only ETD spectra (57%). On Asp-N, Glu-C, or Elastase digested peptides, 69-87% of the HCD + ETD spectral pairs were correctly identified by pNovo+ among the topmost candidates, or 84-95% among the top three. On average, it takes pNovo+ only 0.018 s to extract the sequence from a spectrum or spectral pair on a common personal computer. This is more than three times as fast as other de novo sequencing programs. The increase of speed is mainly due to pDAG, a component algorithm of pNovo+. pDAG finds the k longest paths in a directed acyclic graph without the antisymmetry restriction. We have verified that the antisymmetry restriction is unnecessary for high resolution, high mass accuracy data. The extensive use of HCD and ETD spectral information and the pDAG algorithm make pNovo+ an excellent de novo sequencing tool.


IEEE ACM Transactions on Networking | 2008

On guaranteed smooth switching for buffered crossbar switches

Simin He; Shutao Sun; Hong-Tao Guan; Qiang Zheng; Youjian Zhao; Wen Gao

Scalability considerations drive the evolution of switch design from output queueing to input queueing and further to combined input and crosspoint queueing (CICQ). However, CICQ switches with credit-based flow control face new challenges of scalability and predictability. In this paper, we propose a novel approach of rate-based smoothed switching, and design a CICQ switch called the smoothed buffered crossbar or sBUX. First, the concept of smoothness is developed from two complementary perspectives of covering and spacing, which, commonly known as fairness and jitter, are unified in the same model. Second, a smoothed multiplexer sMUX is designed that allocates bandwidth among competing flows sharing a link and guarantees almost ideal smoothness for each flow. Third, the buffered crossbar sBUX is designed that uses the scheduler sMUX at each input and output, and a two-cell buffer at each crosspoint. It is proved that sBUX guarantees 100% throughput for real-time services and almost ideal smoothness for each flow. Fourth, an on-line bandwidth regulator is designed that periodically estimates bandwidth demand and generates admissible allocations, which enables sBUX to support best-effort services. Simulation shows almost 100% throughput and multi-microsecond average delay. In particular, neither credit-based flow control nor speedup is used, and arbitrary fabric-internal latency is allowed between line cards and the switch core, simplifying the switch implementation.


Nature Methods | 2015

Mapping native disulfide bonds at a proteome scale

Shan Lu; Sheng-Bo Fan; Bing Yang; Yu-Xin Li; Jia‐Ming Meng; Long Wu; Pin Li; Kun Zhang; Mei-Jun Zhang; Yan Fu; Jincai Luo; Rui-Xiang Sun; Simin He; Meng-Qiu Dong

We developed a high-throughput mass spectrometry method, pLink-SS (http://pfind.ict.ac.cn/software/pLink/2014/pLink-SS.html), for precise identification of disulfide-linked peptides. Using pLink-SS, we mapped all native disulfide bonds of a monoclonal antibody and ten standard proteins. We performed disulfide proteome analyses and identified 199 disulfide bonds in Escherichia coli and 568 in proteins secreted by human endothelial cells. We discovered many regulatory disulfide bonds involving catalytic or metal-binding cysteine residues.


Journal of Proteome Research | 2010

Improved Peptide Identification for Proteomic Analysis Based on Comprehensive Characterization of Electron Transfer Dissociation Spectra

Rui-Xiang Sun; Meng-Qiu Dong; Chun-Qing Song; Hao Chi; Bing Yang; Li-Yun Xiu; Li Tao; Zhi-Yi Jing; Chao Liu; Le-Heng Wang; Yan Fu; Simin He

In recent years, electron transfer dissociation (ETD) has enjoyed widespread applications from sequencing of peptides with or without post-translational modifications to top-down analysis of intact proteins. However, peptide identification rates from ETD spectra compare poorly with those from collision induced dissociation (CID) spectra, especially for doubly charged precursors. This is in part due to an insufficient understanding of the characteristics of ETD and consequently a failure of database search engines to make use of the rich information contained in the ETD spectra. In this study, we statistically characterized ETD fragmentation patterns from a collection of 461 440 spectra and subsequently implemented our findings into pFind, a database search engine developed earlier for CID data. From ETD spectra of doubly charged precursors, pFind 2.1 identified 63-122% more unique peptides than Mascot 2.2 under the same 1% false discovery rate. For higher charged peptides as well as phosphopeptides, pFind 2.1 also consistently obtained more identifications. Of the features built into pFind 2.1, the following two greatly enhanced its performance: (1) refined automatic detection and removal of high-intensity peaks belonging to the precursor, charge-reduced precursor, or related neutral loss species, whose presence often set spectral matching askew; (2) a thorough consideration of hydrogen-rearranged fragment ions such as z + H and c - H for peptide precursors of different charge states. Our study has revealed that different charge states of precursors result in different hydrogen rearrangement patterns. For a fragment ion, its propensity of gaining or losing a hydrogen depends on (1) the ion type (c or z) and (2) the size of the fragment relative to the precursor, and both dependencies are affected by (3) the charge state of the precursor. In addition, we discovered ETD characteristics that are unique for certain types of amino acids (AAs), such as a prominent neutral loss of SCH(2)CONH(2) (90.0014 Da) from z ions with a carbamidomethylated cysteine at the N-terminus and a neutral loss of histidine side chain C(4)N(2)H(5) (81.0453 Da) from precursor ions containing histidine. The comprehensive list of ETD characteristics summarized in this paper should be valuable for automated database search, de novo peptide sequencing, and manual spectral validation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin)

Yanmei Zhao; Wei Sun; Pan Zhang; Hao Chi; Mei-Jun Zhang; Chun-Qing Song; Xuan Ma; Yunlong Shang; Bin Wang; Youqiao Hu; Zhiqi Hao; Andreas Huhmer; Fanxia Meng; Steven W. L'Hernault; Simin He; Meng-Qiu Dong; Long Miao

Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated.

Collaboration


Dive into the Simin He's collaboration.

Top Co-Authors

Avatar

Rui-Xiang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Chi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chao Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Meng-Qiu Dong

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Haipeng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Le-Heng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wen-Feng Zeng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge