Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simo Vanni is active.

Publication


Featured researches published by Simo Vanni.


Electroencephalography and Clinical Neurophysiology | 1997

Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources

François Mauguière; I Merlet; Nina Forss; Simo Vanni; Veikko Jousmäki; P Adeleine; Riitta Hari

Cortical areas responsive to somatosensory inputs were assessed by recording somatosensory evoked magnetic fields (SEF) to electrical stimulation of the left median nerve at wrist, using a 122-SQUID neuromagnetometer in various conditions of stimulus rate, attentional demand and detection task. Source modelling combined with magnetic resonance imaging (MRI) allowed localisation of six SEF sources on the outer aspect of the hemispheres located respectively: (1) in the posterior bank of the rolandic fissure (area SI), the upper bank of the sylvian fissure (parietal opercular area SII) and the banks of the intraparietal fissure contralateral to stimulation, (2) in the SII area ipsilateral to stimulation and (3) in the mid-frontal or inferior frontal gyri on both sides. All source areas were found to be simultaneously active at 70-140 ms after the stimulus, the SI source was the only one active already at 20-60 ms. The observed activation timing suggests that somatosensory input from SI is processed to higher-order areas through serial feedforward projections. However the long-lasting activations of all sources and their overlap in time is also compatible with a top-down control mediated via backward projections.


Electroencephalography and Clinical Neurophysiology | 1997

Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation: Part II: effects of stimulus rate, attention and stimulus detection

François Mauguière; I Merlet; Nina Forss; Simo Vanni; Veikko Jousmäki; P Adeleine; Riitta Hari

In this study we used a repeated measures design and univariate analysis of variance to study the respective effects of ISI, spatial attention and stimulus detection on the strengths of the sources previously identified by modelling SEFs during the 200 ms following mentally counted left median nerve stimuli delivered at long and random ISIs (Part I). We compared the SEF source strengths in response to frequent and rare stimuli, both in detection and ignoring conditions. This permitted us to establish a hierarchy in the effects of ISI, attention and stimulus detection on the activation of the cortical network of SEF sources distributed in SI and posterior parietal cortex contralateral to stimulation, and in the parietal operculum (SII) and premotor frontal cortex of both hemispheres. In all experimental conditions the SI and parietal opercular sources were the most active. All sources were more active in response to stimuli delivered at long and random ISIs and the frontal sources were activated only in this condition of stimulation. Driving the subjects attention toward the side stimulated had no detectable effect on the activity of SEF sources at short ISI. At long ISIs mental counting of the stimuli increased the responses of all sources except SI. These results suggest that activation of frontal sources during mental counting could reflect a working memory process, and that of posterior parietal sources a spatial attention effect detectable only at long ISIs.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Coinciding early activation of the human primary visual cortex and anteromedial cuneus

Simo Vanni; Topi Tanskanen; Mika Seppä; Kimmo Uutela; Riitta Hari

Proper understanding of processes underlying visual perception requires information on the activation order of distinct brain areas. We measured dynamics of cortical signals with magnetoencephalography while human subjects viewed stimuli at four visual quadrants. The signals were analyzed with minimum current estimates at the individual and group level. Activation emerged 55–70 ms after stimulus onset both in the primary posterior visual areas and in the anteromedial part of the cuneus. Other cortical areas were active after this initial dual activation. Comparison of data between species suggests that the anteromedial cuneus either comprises a homologue of the monkey area V6 or is an area unique to humans. Our results show that visual stimuli activate two cortical areas right from the beginning of the cortical response. The anteromedial cuneus has the temporal position needed to interact with the primary visual cortex V1 and thereby to modify information transferred via V1 to extrastriate cortices.


Experimental Brain Research | 1999

Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings.

K. Portin; Simo Vanni; Veijo Virsu; Riitta Hari

Abstract We recorded whole-scalp magnetoencephalographic (MEG) responses to black-and-white checkerboards to study whether the human cortical responses are quantitatively similar to stimulation of the lower and upper visual field at small, 0–6°, eccentricities. All stimuli evoked strongoccipital responses peaking at 50–100 ms (mean 75 ms). The activation was modeled with a single equivalent current dipole in the contralateral occipital cortex, close to the calcarine fissure, agreeing with an activation of the V1/V2 cortex. The dipole was, on average, twice as strong to lower than to upper field stimuli. Responses to hemifield stimuli that extended to both lower and upper fields resembled the responses to lower field stimuli in source current direction and strength. These results agree with psychophysical data, which indicate lower visual field advantage in complex visual processing. Parieto-occipital responses in the putative V6 complex were similar to lower and upper field stimuli.


NeuroImage | 2004

Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis

Simo Vanni; Jan Warnking; Michel Dojat; Chantal Delon-Martin; Jean Bullier; Christoph Segebarth

We measured the timing of activity in distinct functional areas of the human visual cortex after onset of a visual pattern. This is not possible with visual evoked potentials (VEPs) or magnetic fields alone, and direct combination of functional magnetic resonance imaging (fMRI) with electromagnetic data has turned out to be difficult. We tested a relatively new approach, where both position and orientation of the active cortex was given to the VEP source model. Subjects saw the same visual patterns flashed ON and OFF, both when recording VEPs and fMRI responses. We identified the positions and orientations of the activated cortex in four retinotopic areas in each individual, and the corresponding dipoles were seeded to model the individual evoked potential data. Unexplained variance, comprising signals from other areas, was inversely modeled. Despite the partially a priori fixed model and optimized signal-to-noise ratio of VEP data, full separation of retinotopic areas was only seldom possible due to crosstalk between the adjacent sources, but separation was usually possible between areas V1 and V3/V3a. Whereas the latencies generally followed the hierarchical organization of cortical areas (V1-V2-V3), with around 25 ms between the strongest responses, an early activation emerged 10-20 ms after V1, close to the temporo-occipital junction (LO/V5) and with an additional 20-ms latency in the corresponding region of the opposite hemisphere. Our approach shows that it is feasible to directly seed information from fMRI to electromagnetic source models and to identify the components and dynamics of VEPs in different retinotopic areas of a human individual.


Journal of Vision | 2008

Spatial frequency tuning in human retinotopic visual areas

Linda Henriksson; Lauri Nurminen; Aapo Hyvärinen; Simo Vanni

Human medial occipital cortex comprises multiple visual areas, each with a distinct retinotopic representation of visual environment. We measured spatial frequency (SF) tuning curves with functional magnetic resonance imaging (fMRI) and found consistent differences between these areas. Areas V1, V2, VP, V3, V4v, and V3A were all band-pass tuned, with progressively lower SF optima in V1, V2, and V3A. In VP and V3, the SF optima were similar to optima in V2, whereas V4v showed more individual variation and scattered SF representations on the cortical surface. Area V5+ showed low-pass SF tuning. In each area, the SF optimum declined with increasing eccentricity. After accounting for the cortical magnification, the cortical extent of the optimal spatial wavelengths was approximately constant across eccentricity in V1, which suggests an anatomical constraint for the optimal SF, and this extent is actually comparable to the extent of horizontal connections within primate V1. The optimal spatial wavelengths in the visual field are also of similar extent to the spatial summation fields of macaque V1. The progressive decline in the SF tuning from V1 to V2 and V3A is compatible with the view that these areas represent visual information at different spatial scales.


NeuroImage | 2002

A New Method to Identify Multiple Sources of Oscillatory Activity from Magnetoencephalographic Data

Ole Jensen; Simo Vanni

Identifying the sources of oscillatory activity in the human brain is a challenging problem in current magnetoencephalography (MEG) and electroencephalography (EEG) research. The fluctuations in phase and amplitude of cortical oscillations preclude signal averaging over successive sections of the data without a priori assumptions. In addition, several sources at different locations often produce oscillatory activity at similar frequencies. For example, spontaneous oscillatory activity in the 8- to 13-Hz band is produced simultaneously at least in the posterior parts of the brain and bilaterally in the sensorimotor cortices. The previous approaches of identifying sources of oscillatory activity by dipole modeling of bandpass filtered data are quite laborious and require that multiple criteria are defined by an experienced user. In this work we introduce a convenient method for source localization using minimum current estimates in the frequency domain. Individual current estimates are calculated for the Fourier transforms of successive sections of continuous data. These current estimates are then averaged. The algorithm was tested on simulated and measured MEG data and compared with conventional dipole modeling. The main advantage of the proposed method is that it provides an efficient approach for simultaneous estimation of multiple sources of oscillatory activity in the same frequency band.


Brain Research | 1996

Activation of human mesial cortex during somatosensory target detection task

Nina Forss; Isabelle Merlet; Simo Vanni; Matti Ha¨ma¨la¨inen; Franc¸ois Mauguie`re; Riitta Hari

We recorded somatosensory evoked fields (SEFs) from 10 healthy subjects to ulnar and median nerve stimuli presented at random intervals of 2.4-21.6 s. The subjects either counted the stimuli or ignored them by reading a book. The stimuli activated in both conditions the contralateral SI cortex, the ipsi- and contralateral SII cortices, and the posterior parietal cortex (PPC), in line with earlier observations. In addition, a novel response was observed in nine subjects at 120-160 ms. It was clearly enhanced by attention and was generated in the mesial cortex of the paracentral lobule, close to the end of the central sulcus.


The Journal of Neuroscience | 2011

Recurrent Processing in V1/V2 Contributes to Categorization of Natural Scenes

Mika Koivisto; Henry Railo; Antti Revonsuo; Simo Vanni; Niina Salminen-Vaparanta

Humans are able to categorize complex natural scenes very rapidly and effortlessly, which has led to an assumption that such ultra-rapid categorization is driven by feedforward activation of ventral brain areas. However, recent accounts of visual perception stress the role of recurrent interactions that start rapidly after the activation of V1. To study whether or not recurrent processes play a causal role in categorization, we applied fMRI-guided transcranial magnetic stimulation on early visual cortex (V1/V2) and lateral occipital cortex (LO) while the participants categorized natural images as containing animals or not. The results showed that V1/V2 contributed to categorization speed and to subjective perception during a long activity period before and after the contribution of LO had started. This pattern of results suggests that recurrent interactions in visual cortex between areas along the ventral stream and striate cortex play a causal role in categorization and perception of natural scenes.


Journal of Neurology, Neurosurgery, and Psychiatry | 2007

Training-induced cortical representation of a hemianopic hemifield

Linda Henriksson; Antti Raninen; Risto Näsänen; Lea Hyvärinen; Simo Vanni

Background: Patients with homonymous hemianopia often have some residual sensitivity for visual stimuli in their blind hemifield. Previous imaging studies suggest an important role for extrastriate cortical areas in such residual vision, but results of training to improve vision in patients with hemianopia are conflicting. Objective: To show that intensive training with flicker stimulation in the chronic stage of stroke can reorganise visual cortices of an adult patient. Methods: A 61-year-old patient with homonymous hemianopia was trained with flicker stimulation, starting 22 months after stroke. Changes in functioning during training were documented with magnetoencephalography, and the cortical organisation after training was examined with functional magnetic resonance imaging (fMRI). Results: Both imaging methods showed that, after training, visual information from both hemifields was processed mainly in the intact hemisphere. The fMRI mapping results showed the representations of both the blind and the normal hemifield in the same set of cortical areas in the intact hemisphere, more specifically in the visual motion-sensitive area V5, in a region around the superior temporal sulcus and in retinotopic visual areas V1 (primary visual cortex), V2, V3 and V3a. Conclusions: Intensive training of a blind hemifield can induce cortical reorganisation in an adult patient, and this case shows an ipsilateral representation of the trained visual hemifield in several cortical areas, including the primary visual cortex.

Collaboration


Dive into the Simo Vanni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew C. James

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Aki Vehtari

Helsinki Institute for Information Technology

View shared research outputs
Top Co-Authors

Avatar

Lauri Nurminen

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar

Toni Auranen

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge