Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon A. Lawson is active.

Publication


Featured researches published by Simon A. Lawson.


Biological Invasions | 2010

DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America

Ryan Leslie Nadel; Bernard Slippers; Mary C. Scholes; Simon A. Lawson; Ann E. Noack; C.F. Wilcken; J.P. Bouvet; Michael J. Wingfield

Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2–0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.


Australasian Plant Pathology | 2007

Ceratocystis atrox sp. nov. associated with Phoracantha acanthocera infestations on Eucalyptus grandis in Australia

Marelize van Wyk; Geoff S. Pegg; Simon A. Lawson; Michael J. Wingfield

Ceratocystis spp. include important pathogens of trees as well as apparently saprophytic species. Four species have been recorded on Eucalyptus grandis in Australia, of which only one, C. pirilliformis Barnes and M.J. Wingf., is known to be pathogenic. A recent survey of pests and diseases of Eucalyptus trees in northern Queensland revealed a species of Ceratocystis associated with the tunnels made by the aggressive wood-boring insect Phoracantha acanthocera (Macleay) (Cerambicydae: Coleoptera). The aim of the present study was to identify the fungus based on morphological characteristics and comparisons of DNA sequence data for three gene regions. The fungus peripherally resembles C. fimbriata Ell. and Halst. but differs from this species most obviously by having much darker mycelium, longer ascomatal necks, segmented hyphae and an absence of aleuroconidia. Comparisons of combined sequence data confirmed that the Ceratocystis sp. from P. acanthocera represents an undescribed taxon, which is provided with the name Ceratocystis atrox sp. nov. C. atrox appears to have a close relationship with P. acanthocera, although its role in the biology of the insect is unknown and its pathogenicity has not been considered.


Biocontrol | 2012

Mitochondrial DNA diversity of Cleruchoides noackae (Hymenoptera: Mymaridae): a potential biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae)

Ryan Leslie Nadel; Michael J. Wingfield; Mary C. Scholes; Simon A. Lawson; Ann E. Noack; Stefan Neser; Bernard Slippers

Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) is a native Australian Eucalyptus sap-feeding insect that has become invasive and seriously damaging to commercially grown Eucalyptus in the Southern Hemisphere. Cleruchoides noackae Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome c oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native C. noackae populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that C. noackae has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for C. noackae is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of T. peregrinus. If implemented as a biological control agent, this factor will need to be considered in collecting and releasing C. noackae.


PLOS ONE | 2015

Identification of the Sex Pheromone of the Tree Infesting Cossid Moth Coryphodema tristis (Lepidoptera: Cossidae)

Marc Clement Bouwer; Bernard Slippers; Dawit Tesfaye Degefu; Michael J. Wingfield; Simon A. Lawson; Egmont Richard Rohwer

The cossid moth (Coryphodema tristis) has a broad range of native tree hosts in South Africa. The moth recently moved into non-native Eucalyptus plantations in South Africa, on which it now causes significant damage. Here we investigate the chemicals involved in pheromone communication between the sexes of this moth in order to better understand its ecology, and with a view to potentially develop management tools for it. In particular, we characterize female gland extracts and headspace samples through coupled gas chromatography electro-antennographic detection (GC-EAD) and two dimensional gas chromatography mass spectrometry (GCxGC-MS). Tentative identities of the potential pheromone compounds were confirmed by comparing both retention time and mass spectra with authentic standards. Two electrophysiologically active pheromone compounds, tetradecyl acetate (14:OAc) and Z9-tetradecenyl acetate (Z9-14:OAc) were identified from pheromone gland extracts, and an additional compound (Z9-14:OH) from headspace samples. We further determined dose response curves for the identified compounds and six other structurally similar compounds that are common to the order Cossidae. Male antennae showed superior sensitivity toward Z9-14:OAc, Z7-tetradecenyl acetate (Z7-14:OAc), E9-tetradecenyl acetate (E9-14:OAc), Z9-tetradecenol (Z9-14:OH) and Z9-tetradecenal (Z9-14:Ald) when compared to female antennae. While we could show electrophysiological responses to single pheromone compounds, behavioral attraction of males was dependent on the synergistic effect of at least two of these compounds. Signal specificity is shown to be gained through pheromone blends. A field trial showed that a significant number of males were caught only in traps baited with a combination of Z9-14:OAc (circa 95% of the ratio) and Z9-14:OH. Addition of 14:OAc to this mixture also improved the number of males caught, although not significantly. This study represents a major step towards developing a useful attractant to be used in management tools for C. tristis and contributes to the understanding of chemical communication and biology of this group of insects.


Environmental Entomology | 2014

Host tree influences on longicorn beetle (Coleoptera: Cerambycidae) attack in subtropical Corymbia (Myrtales: Myrtaceae)

Helen F. Nahrung; Timothy E. Smith; Aaron Wiegand; Simon A. Lawson; Valerie J. Debuse

ABSTRACT Phoracantha longicorn beetles are endemic to Australia, and some species have become significant pests of eucalypts worldwide, yet little is known about their host plant interactions and factors influencing tree susceptibility in Australia. Here, we investigate the host relationships of Phoracantha solida (Blackburn, 1894) on four eucalypt taxa (one pure species and three hybrid families), examining feeding site physical characteristics including phloem thickness, density, and moisture content, and host tree factors such as diameter, height, growth, taper, and survival. We also determine the cardinal and vertical (within-tree) and horizontal (between-tree) spatial distribution of borers. Fewer than 10% of P. solida attacks were recorded from the pure species (Corymbia citriodora subsp. variegate (Hook)), and this taxon also showed the highest survival, phloem thickness, relative growth rate, and bark:wood area. For the two most susceptible taxa, borer severity was negatively correlated with moisture content, and positively related to phloem density. Borers were nonrandomly and nonuniformly distributed within trees, and were statistically aggregated in 32% of plots. More attacks were situated on the northern side of the tree than the other aspects, and most larvae fed within the lower 50 cm of the bole, with attack height positively correlated with severity. Trees with borers had more dead neighbors, and more bored neighbors, than trees without borers, while within plots, borer incidence and severity were positively correlated. Because the more susceptible taxa overlapped with less susceptible taxa for several physical tree factors, the role of primary and secondary chemistries in determining host suitability needs to be investigated. Nevertheless, taxon, moisture content, phloem density, tree size, and mortality of neighboring trees appeared the most important physical characteristics influencing host suitability for P. solida at this site.


Biological Invasions | 2018

Population genetic analyses of complex global insect invasions in managed landscapes: a Leptocybe invasa (Hymenoptera) case study

Gudrun Dittrich-Schröder; T B Hoareau; Brett Phillip Hurley; Michael J. Wingfield; Simon A. Lawson; Helen F. Nahrung; Bernard Slippers

AbstractIncreased rates of movement and the accumulation of insects establishing outside their native range is leading to the ‘global homogenization’ of agricultural and forestry pests. We use an invasive wasp, Leptocybe invasa (Hymenoptera: Eulophidae), as a case study to highlight the rapid and complex nature of these global invasions and how they can complicate management options. To trace the invasion history of L. invasa globally, we characterised the genetic diversity within and between populations from its origin and invaded regions using mitochondrial and nuclear markers. Three mitochondrial Haplogroups were identified, of which two are likely different species that appear to have been independently introduced into different parts of the world. One type (Mitochondrial Haplogroup 1) occurs globally, and is the exclusive type found in Europe, the Middle East, South America and most of Africa. The second type (Mitochondrial Haplogroup 2) co-occurs with the first-type in Laos, South Africa, Thailand and Vietnam, while a third type (Mitochondrial Haplogroup 3) occurs exclusively in Australia, its native range. The distinction of the two invasive Haplogroups was supported by analysis of newly developed simple sequence repeat (microsatellite) markers in populations from 13 countries. Further analyses using clustering methods and approximate Bayesian computation suggested the occurrence of hybridisation in the Laos population and revealed that an unsampled population was the origin of Mitochondrial Haplogroup 1. The analyses also showed little genetic differentiation within the invasive populations, suggesting a limited original introduction from a very small population followed by rapid, global range expansion in a stepwise fashion. Results of this study should provide some guidelines for characterizing invasion pathways of new invasive insect pests.


Journal of Pest Science | 2018

Population genetics of the Australian eucalypt pest Thaumastocoris peregrinus : evidence for a recent invasion of Sydney

Nathan Lo; Ashley Montagu; Ann E. Noack; Helen F. Nahrung; Heng Wei; Mark D. B. Eldridge; Karen-Ann Gray; Harley A. Rose; Gerasimos Cassis; Rebecca N. Johnson; Simon A. Lawson

Biological invasions represent a major threat to agriculture and forestry across the globe. Thaumastocoris peregrinus is a small sap-sucking heteropteran bug that has recently invaded a number of eucalypt plantations worldwide from its native range in Australia. To date, no studies have examined the range of this insect within Australia, and its population genetics remain poorly understood. We sampled T. peregrinus from 16 populations from South East Queensland, across New South Wales (NSW) and Victoria to south-eastern South Australia, and generated microsatellite and mtDNA data for ~ 200 individuals. Population genetic analyses consistently revealed moderate levels of genetic isolation by distance among populations across the range. Nonetheless, T. peregrinus has undergone dispersal across large distances, as revealed by the presence of identical mitochondrial haplotypes in both South East Queensland and South Australia. Two populations within the Sydney area (NSW) were divergent from other populations based on STRUCTURE and factorial correspondence analysis. They also had relatively low allelic richness and haplotype diversity indices. These results suggest they are the result of a relatively recent invasion event, consistent with their discovery in 2001. Pairwise genetic distance analyses suggest that the source of the invasion may have been central NSW. Our study provides an important framework for understanding the biology of this pest in its native environment, and may have implications for determining how it has invaded multiple areas worldwide.


2016 International Congress of Entomology | 2016

Molecular markers confirm the origin and reveal complex global invasion history of the eucalyptus gall wasp,Leptocybe invasa

Gudrun Dittrich-Schröder; Brett Phillip Hurley; Michael J. Wingfield; Bernard Slippers; Simon A. Lawson; H. Nahrung

The Eucalyptus gall wasp, Leptocybe invasa (Hymenoptera: Eulophidae), has spread rapidly to all continents where Eucalyptus spp. are planted and is now one of the most important insect pests threatening global plantation forestry. In order to study the routes and extent of L. invasa introductions globally, we characterised the genetic diversity of populations from the purported origin and invaded regions of the wasp. From the 511 L. invasa specimens, 26 cytochrome oxidase I (COI) haplotypes were identified, of which three were found in the invaded range. Two of the three distinct lineages, which could represent cryptic species, appear to have been independently introduced into different parts of the world. One lineage (A) occurs throughout the invaded range, and is found exclusively in Europe, the Middle East, South America and most of Africa. The second lineage (B) co-occurs with lineage A in Laos, South Africa, Thailand and Vietnam. The third lineage (C) occurs only in Australia. Analyses using 13 newly developed simple sequence repeat (SSR) markers in sub-populations of L. invasa supported the distinction of the three lineages. These findings underpin the weakness of currently applied quarantine measures to halt the movement of plantation pests and question the suitability of measures being used to control L. invasa. Ongoing research using the SSR marker data should confirm the possible existence of cryptic species in the L. invasa populations, hybridization or admixture between the two lineages, and the reproductive mode of the pest in its invasive range.


Insects and Diseases of Mediterranean Forest Systems | 2016

Native Phloem and Wood Borers in Australian Mediterranean Forest Trees

Simon A. Lawson; Valerie J. Debuse

Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.


Annals of Forest Science | 2012

The potential for monitoring and control of insect pests in Southern Hemisphere forestry plantations using semiochemicals

Ryan Leslie Nadel; Michael J. Wingfield; Mary C. Scholes; Simon A. Lawson; Bernard Slippers

Collaboration


Dive into the Simon A. Lawson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen F. Nahrung

University of the Sunshine Coast

View shared research outputs
Top Co-Authors

Avatar

Mary C. Scholes

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge