Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon A. Sharples is active.

Publication


Featured researches published by Simon A. Sharples.


Frontiers in Neural Circuits | 2014

Dopamine: a parallel pathway for the modulation of spinal locomotor networks

Simon A. Sharples; Kathrin Koblinger; Jennifer M. Humphreys; Patrick J. Whelan

The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.


Journal of Neurophysiology | 2015

Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord

Simon A. Sharples; Jennifer M. Humphreys; A. Marley Jensen; Sunny Dhoopar; Nicole Delaloye; Stefan Clemens; Patrick J. Whelan

Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families-the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator.


Journal of Neuroscience Methods | 2012

Modulation of cortical excitability and interhemispheric inhibition prior to rhythmic unimanual contractions

Simon A. Sharples; Jayne M. Kalmar

The objective of this study was to investigate premotor modulation of motor cortical excitability between rhythmic unimanual finger contractions. Applying TMS at rest prior to an anticipated contraction provides a measure of cortical excitability that reflects premotor modulatory drive and is uncontaminated by the alterations in spinal and cortical excitability that occur during muscle activation. We hypothesized that premotor structures contribute to unimanual movement through the modulation of intracortical and interhemispheric inhibitory circuits within the primary motor cortex and that this premotor modulation would be evident at rest between contractions. Thus, we used transcranial magnetic stimulation (TMS) to assess short interval intracortical inhibition (SICI) and interhemispheric inhibition (IHI) in a 500-ms epoch prior to a planned contraction of the right FDI in 10 participants (21.4±1.9 years). These measures of inhibition were made in three different states: (1) at complete rest (with no plan to contract), (2) at rest between rhythmic contractions, and (3) during low level contractions. Cortical excitability was enhanced prior to a contraction and during a contraction compared to at rest (F₂,₁₈=758.3, p<0.001). IHI was also increased prior to a contraction compared to at rest and during a contraction while SICI was only reduced during a contraction (F₂,₃₈=30.3, p<0.001).We used this pre-contraction protocol to investigate the cortical mechanisms of unimanual control. However, this protocol would be a useful tool to investigate any neuromuscular adaptation that may occur as a result of altered premotor modulation of cortical excitability, such as neuromuscular fatigue, training and movement disorders.


eNeuro | 2017

Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

Simon A. Sharples; Patrick J. Whelan

Visual Abstract Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network.


The Journal of Physiology | 2016

Modulatory and plastic effects of kinins on spinal cord networks.

Sravan Mandadi; H. Leduc-Pessah; Peter Hong; J. Ejdrygiewicz; Simon A. Sharples; T. Trang; Patrick J. Whelan

Inflammatory kinins are released following spinal cord injury or neurotrauma. The effects of these kinins on ongoing locomotor activity of central pattern generator networks are unknown. In the present study, kinins were shown to have short‐ and long‐term effects on motor networks. The short‐term effects included direct depolarization of interneurons and motoneurons in the ventral horn accompanied by modulation of transient receptor potential vanilloid 1‐sensitive nociceptors in the dorsal horn. Over the long‐term, we observed a bradykinin‐mediated effect on promoting plasticity in the spinal cord. In a model of spinal cord injury, we observed an increase in microglia numbers in both the dorsal and ventral horn and, in a microglia cell culture model, we observed bradykinin‐induced expression of glial‐derived neurotrophic factor.


PLOS ONE | 2016

Cortical Mechanisms of Central Fatigue and Sense of Effort

Simon A. Sharples; Jason A. Gould; Michael S. Vandenberk; Jayne M. Kalmar

The purpose of this study was to investigate cortical mechanisms upstream to the corticospinal motor neuron that may be associated with central fatigue and sense of effort during and after a fatigue task. We used two different isometric finger abduction protocols to examine the effects of muscle activation and fatigue the right first dorsal interosseous (FDI) of 12 participants. One protocol was intended to assess the effects of muscle activation with minimal fatigue (control) and the other was intended to elicit central fatigue (fatigue). We hypothesized that high frequency repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) would hasten recovery from central fatigue and offset a fatigue-induced increase in sense of effort by facilitating the primary motor cortex (M1). Constant force-sensation contractions were used to assess sense of effort associated with muscle contraction. Paired-pulse TMS was used to assess intracortical inhibition (ICI) and facilitation (ICF) in the active M1 and interhemispheric inhibitory (IHI) was assessed to determine if compensation occurs via the resting M1. These measures were made during and after the muscle contraction protocols. Corticospinal excitability progressively declined with fatigue in the active hemisphere. ICF increased at task failure and ICI was also reduced at task failure with no changes in IHI found. Although fatigue is associated with progressive reductions in corticospinal excitability, compensatory changes in inhibition and facilitation may act within, but not between hemispheres of the M1. rTMS of the SMA following fatigue enhanced recovery of maximal voluntary force and higher levels of ICF were associated with lower sense of effort following stimulation. rTMS of the SMA may have reduced the amount of upstream drive required to maintain motor output, thus contributing to a lower sense of effort and increased rate of recovery of maximal force.


Journal of Parkinson's disease | 2014

Cortical mechanisms of mirror activation during maximal and submaximal finger contractions in Parkinson's disease.

Simon A. Sharples; Quincy J. Almeida; Jayne M. Kalmar

BACKGROUND Mirror movements are often reported in the early stages of Parkinsons disease (PD) and have been attributed to bilateral activation of the primary motor cortex; however, the precise cortical mechanisms are still unclear. Subclinical mirror activation (MA) that accompanies mirror movement has also been reported in healthy aging adults. OBJECTIVE To characterize mirror activation and determine the cortical mechanisms of MA in individuals with PD who demonstrate mirror movements. HYPOTHESIS 5 Hz rTMS to the supplementary motor area (SMA) will reduce MA by increasing interhemispheric inhibition (IHI) of the ipsilateral motor cortex. METHODS MA was assessed using surface electromyography during maximal and submaximal unimanual contractions of the first dorsal interosseous in 7 individuals with PD with mirror movements (PD-MM: 70.9 ± 13.9 years; UPDRS III: 28.0 ± 8.2), 7 individuals with PD without mirror movements (PD-NM: 71 ± 10.1 years; UPDRS III: 27.8 ± 6.7) and 7 healthy controls (74.4 ± 6.0 years). IHI of the ipsilateral motor cortex was assessed using paired-pulse transcranial magnetic stimulation. RESULTS MA was enhanced in both PD groups during submaximal contractions, with the latest onset of activation in PD-NM. Ipsilateral motor cortex excitability was the highest in PDMM; however, IHI did not differ between PD and controls. 5 Hz rTMS to the SMA reduced IHI in PD-NM; however, did not affect MA. CONCLUSIONS IHI may not be the sole contributor to the expression of overt mirror movements in PD. Expression of overt mirror movement may be due to the combination of enhanced ipsilateral motor cortex excitability and an earlier onset of electromyographic activation in the mirror hand (mirror activation) in PDMM.


The Journal of Neuroscience | 2017

Dopamine Pumping Up Spinal Locomotor Network Function

Simon A. Sharples

Central pattern generator networks in the lumbar spinal cord of mammals control a variety of rhythmic movements of the hind limbs. Although these networks can function in isolation, modulatory inputs configure the network to create diversity and stability in network operation. Modulators have


Frontiers in Neuroscience | 2017

Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors

Linda Kim; Sandeep Sharma; Simon A. Sharples; Kyle A. Mayr; Charlie H. T. Kwok; Patrick J. Whelan

Over the past decade there has been a renaissance in our understanding of spinal cord circuits; new technologies are beginning to provide key insights into descending circuits which project onto spinal cord central pattern generators. By integrating work from both the locomotor and animal behavioral fields, we can now examine context-specific control of locomotion, with an emphasis on descending modulation arising from various regions of the brainstem. Here we examine approach and avoidance behaviors and the circuits that lead to the production and arrest of locomotion.


Journal of Neurophysiology | 2018

Retracing your footsteps: developmental insights to spinal network plasticity following injury.

Céline Jean-Xavier; Simon A. Sharples; Kyle A. Mayr; Adam Parker Lognon; Patrick J. Whelan

During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.

Collaboration


Dive into the Simon A. Sharples's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayne M. Kalmar

Wilfrid Laurier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Clemens

East Carolina University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Jean-Xavier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge