Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon C. Drew is active.

Publication


Featured researches published by Simon C. Drew.


Journal of the American Chemical Society | 2009

Pleomorphic Copper Coordination by Alzheimer’s Disease Amyloid-β Peptide

Simon C. Drew; Christopher J. Noble; Colin L. Masters; Graeme R. Hanson; Kevin J. Barnham

Numerous conflicting models have been proposed regarding the nature of the Cu(2+) coordination environment of the amyloid beta (Abeta) peptide, the causative agent of Alzheimers disease. This study used multifrequency CW-EPR spectroscopy to directly resolve the superhyperfine interactions between Cu(2+) and the ligand nuclei of Abeta, thereby avoiding ambiguities associated with introducing point mutations. Using a library of Abeta16 analogues with site-specific (15)N-labeling at Asp1, His6, His13, and His14, numerical simulations of the superhyperfine resonances delineated two independent 3N1O Cu(2+) coordination modes, {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H13)} (component Ia) and {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H14)} (component Ib), between pH 6-7. A third coordination mode (component II) was identified at pH 8.0, and simulation of the superhyperfine resonances indicated a 3N1O coordination sphere involving nitrogen ligation by His6, His13, and His14. No differences were observed upon (17)O-labeling of the phenolic oxygen of Tyr10, confirming it is not a key oxygen ligand in the physiological pH range. Hyperfine sublevel correlation (HYSCORE) spectroscopy, in conjunction with site-specific (15)N-labeling, provided additional support for the common role of His6 in components Ia and Ib, and for the assignment of a {O, N(epsilon)(H6), N(epsilon)(H13), N(epsilon)(H14)} coordination sphere to component II. HYSCORE studies of a peptide analogue with selective (13)C-labeling of Asp1 revealed (13)C cross-peaks characteristic of equatorial coordination by the carboxylate oxygen of Asp1 in component Ia/b coordination. The direct resolution of Cu(2+) ligand interactions, together with the key finding that component I is composed of two distinct coordination modes, provides valuable insight into a range of conflicting ligand assignments and highlights the complexity of Cu(2+)/Abeta interactions.


Journal of Biological Chemistry | 2006

Copper-mediated Amyloid-β Toxicity Is Associated with an Intermolecular Histidine Bridge

David P. Smith; Danielle G. Smith; Cyril C. Curtain; John F. Boas; John R. Pilbrow; Giuseppe D. Ciccotosto; Tong-Lay Lau; Deborah J. Tew; Keyla Perez; John D. Wade; Ashley I. Bush; Simon C. Drew; Frances Separovic; Colin L. Masters; Roberto Cappai; Kevin J. Barnham

Amyloid-β peptide (Aβ) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic Aβ-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/peptide ratios of >0.6:1 by EPR spectroscopy. The toxicity of the Aβ-Cu2+ complex to cultured primary cortical neurons was attenuated when either the π -or τ-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl-1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. 31P magic angle spinning solid-state NMR showed that Aβ and Aβ-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the Aβ toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.


Journal of the American Chemical Society | 2009

Alanine-2 Carbonyl is an Oxygen Ligand in Cu2+ Coordination of Alzheimer’s Disease Amyloid-β Peptide − Relevance to N-Terminally Truncated Forms

Simon C. Drew; Colin L. Masters; Kevin J. Barnham

Copper interactions with the beta-amyloid peptide (Abeta) are believed to play a role in Alzheimers disease (AD), in particular due to production of reactive oxygen species and Cu(2+)-mediated oligomerization. To understand the role that copper might play in these processes, a detailed knowledge of the fundamental Cu(2+)/Abeta interactions is essential. To date, the identity of the oxygen ligand(s) involved in Cu(2+) coordination by Abeta has remained unclear. Here, we have used site-specific (13)C and (15)N labeling in conjunction with hyperfine sublevel correlation (HYSCORE) spectroscopy to unambiguously identify the carbonyl of Alanine-2 as an oxygen ligand in one of the pH-dependent Cu(2+) coordination modes of Abeta. Polarization of the carbonyl moiety by Cu(2+) could promote amide hydrolysis and cleavage of the peptide bond between Ala2 and Glu3, providing a chemical mechanism for the generation of truncated Abeta 3-40/42 species found in AD plaques.


Journal of the American Chemical Society | 2008

Cu2+ Binding Modes of Recombinant α-Synuclein − Insights from EPR Spectroscopy

Simon C. Drew; Su Ling Leong; Chi L. L. Pham; Deborah J. Tew; Colin L. Masters; Luke A. Miles; Roberto Cappai; Kevin J. Barnham

The interaction of the small (140 amino acid) protein, alpha-synuclein (alphaS), with Cu(2+) has been proposed to play a role in Parkinsons disease (PD). While some insight from truncated model complexes has been gained, the nature of the corresponding Cu(2+) binding modes in the full length protein remains comparatively less well characterized. This work examined the Cu(2+) binding of recombinant human alphaS using Electron Paramagnetic Resonance (EPR) spectroscopy. Wild type (wt) alphaS was shown to bind stoichiometric Cu(2+) via two N-terminal binding modes at physiological pH. An H50N mutation isolated one binding mode, whose g parallel, A parallel, and metal-ligand hyperfine parameters correlated well with a {NH2, N(-), beta-COO(-), H2O} mode previously identified in truncated model fragments. Electron spin-echo envelope modulation (ESEEM) studies of wt alphaS confirmed the second binding mode at pH 7.4 involved coordination of His50 and its g parallel and A parallel parameters correlated with either {NH2, N(-), beta-COO(-), N(Im)} or {N(Im), 2 N(-)} coordination observed in alphaS fragments. At pH 5.0, His50-anchored Cu(2+) binding was greatly diminished, while {NH2, N(-), beta-COO(-), H2O} binding persisted in conjunction with another two binding modes. Metal-ligand hyperfine interactions from one of these indicated a 1N3O coordination sphere, which was ascribed to a {NH2, CO} binding mode. The other was characterized by a spectrum similar to that previously observed for diethylpyrocarbonate-treated alphaS and was attributed to C-terminal binding centered on Asp121. In total, four Cu(2+) binding modes were identified within pH 5.0-7.4, providing a more comprehensive picture of the Cu(2+) binding properties of recombinant alphaS.


European Biophysics Journal | 2010

The structure of dopamine induced α-synuclein oligomers

Agata Rekas; Robert Knott; Anna Sokolova; Kevin J. Barnham; Keyla Perez; Colin L. Masters; Simon C. Drew; Roberto Cappai; Cyril C. Curtain; Chi L. L. Pham

Inclusions of aggregated α-synuclein (α-syn) in dopaminergic neurons are a characteristic histological marker of Parkinson’s disease (PD). In vitro, α-syn in the presence of dopamine (DA) at physiological pH forms SDS-resistant non-amyloidogenic oligomers. We used a combination of biophysical techniques, including sedimentation velocity analysis, small angle X-ray scattering (SAXS) and circular dichroism spectroscopy to study the characteristics of α-syn oligomers formed in the presence of DA. Our SAXS data show that the trimers formed by the action of DA on α-syn consist of overlapping worm-like monomers, with no end-to-end associations. This lack of structure contrasts with the well-established, extensive β-sheet structure of the amyloid fibril form of the protein and its pre-fibrillar oligomers. We propose on the basis of these and earlier data that oxidation of the four methionine residues at the C- and N-terminal ends of α-syn molecules prevents their end-to-end association and stabilises oligomers formed by cross linking with DA-quinone/DA-melanin, which are formed as a result of the redox process, thus inhibiting formation of the β-sheet structure found in other pre-fibrillar forms of α-syn.


Biochemical Journal | 2007

Differential modulation of Alzheimer's disease amyloid β-peptide accumulation by diverse classes of metal ligands

Aphrodite Caragounis; Tai Du; Gulay Filiz; Katrina M. Laughton; Irene Volitakis; Robyn A. Sharples; Robert A. Cherny; Colin L. Masters; Simon C. Drew; Andrew F. Hill; Qiao-Xin Li; Peter J. Crouch; Kevin J. Barnham; Anthony R. White

Biometals have an important role in AD (Alzheimers disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the results are consistent with the effects being due to metal transport rather than the chelating ligand interacting directly with a receptor.


Neurobiology of Aging | 2011

Stereospecific interactions are necessary for Alzheimer disease amyloid-β toxicity

Giuseppe D. Ciccotosto; Deborah J. Tew; Simon C. Drew; Danielle G. Smith; Timothy Johanssen; Varsha Lal; Tong-Lay Lau; Keyla Perez; Cyril C. Curtain; John D. Wade; Frances Separovic; Colin L. Masters; Jeffrey P. Smith; Kevin J. Barnham; Roberto Cappai

Previous studies suggest membrane binding is a key determinant of amyloid β (Aβ) neurotoxicity. However, it is unclear whether this interaction is receptor driven. To address this issue, a D-handed enantiomer of Aβ42 (D-Aβ42) was synthesized and its biophysical and neurotoxic properties were compared to the wild-type Aβ42 (L-Aβ42). The results showed D- and L-Aβ42 are chemically equivalent with respect to copper binding, generation of reactive oxygen species and aggregation profiles. Cell binding studies show both peptides bound to cultured cortical neurons. However, only L-Aβ42 was neurotoxic and inhibited long term potentiation indicating L-Aβ42 requires a stereospecific target to mediate toxicity. We identified the lipid phosphatidylserine, as a potential target. Annexin V, which has very high affinity for externalized phosphatidylserine, significantly inhibited L-Aβ42 but not D-Aβ42 binding to the cultured cortical neurons and significantly rescued L-Aβ42 neurotoxicity. This suggests that Aβ mediated toxicity in Alzheimer disease is dependent upon Aβ binding to phosphatidylserine on neuronal cells.


PLOS ONE | 2010

Alzheimer's Aβ peptides with disease-associated N-terminal modifications: influence of isomerisation, truncation and mutation on Cu2+ coordination.

Simon C. Drew; Colin L. Masters; Kevin J. Barnham

Background The amyloid-β (Aβ) peptide is the primary component of the extracellular senile plaques characteristic of Alzheimers disease (AD). The metals hypothesis implicates redox-active copper ions in the pathogenesis of AD and the Cu2+ coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression. Methodology/Principal Findings We previously characterised three Cu2+/Aβ1–16 coordination modes in the physiological pH range that involve the first two residues. Based upon our finding that the carbonyl of Ala2 is a Cu2+ ligand, here we speculate on a hypothetical Cu2+-mediated intramolecular cleavage mechanism as a source of truncations beginning at residue 3. Using EPR spectroscopy and site-specific isotopic labelling, we have also examined four Aβ peptides with biologically relevant N-terminal modifications, Aβ1[isoAsp]–16, Aβ1–16(A2V), Aβ3–16 and Aβ3[pE]–16. The recessive A2V mutation preserved the first coordination sphere of Cu2+/Aβ, but altered the outer coordination sphere. Isomerisation of Asp1 produced a single dominant species involving a stable 5-membered Cu2+ chelate at the amino terminus. The Aβ3–16 and Aβ3[pE]–16 peptides both exhibited an equilibrium between two Cu2+ coordination modes between pH 6–9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus. Conclusions/Significance N-terminal modifications significantly influence the Cu2+ coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the generation of the Aβ3–× (× = 40/42) precursor of disease-associated Aβ3[pE]–x species.


Angewandte Chemie | 2015

A Functional Role for Aβ in Metal Homeostasis? N-Truncation and High-Affinity Copper Binding†

Mariusz Mital; Nina Ewa Wezynfeld; Tomasz Frączyk; Magdalena Z. Wiloch; Urszula E. Wawrzyniak; Arkadiusz Bonna; Carolin Tumpach; Kevin J. Barnham; Cathryn L. Haigh; Wojciech Bal; Simon C. Drew

Accumulation of the β-amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimers disease (AD). The Aβ1-x (x=16/28/40/42) peptides have been the primary focus of Cu(II) binding studies for more than 15 years; however, the N-truncated Aβ4-42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N-terminal FRH sequence. Proteins with His at the third position are known to bind Cu(II) avidly, with conditional log K values at pH 7.4 in the range of 11.0-14.6, which is much higher than that determined for Aβ1-x peptides. By using Aβ4-16 as a model, it was demonstrated that its FRH sequence stoichiometrically binds Cu(II) with a conditional Kd value of 3×10(-14)  M at pH 7.4, and that both Aβ4-16 and Aβ4-42 possess negligible redox activity. Combined with the predominance of Aβ4-42 in the brain, our results suggest a physiological role for this isoform in metal homeostasis within the central nervous system.


Inorganic Chemistry | 2013

Mixed Ligand Cu2+ Complexes of a Model Therapeutic with Alzheimer’s Amyloid-β Peptide and Monoamine Neurotransmitters

Vijaya Kenche; Izabela Zawisza; Colin L. Masters; Wojciech Bal; Kevin J. Barnham; Simon C. Drew

8-Hydroxyquinolines (8HQ) have found widespread application in chemistry and biology due to their ability to complex a range of transition metal ions. The family of 2-substituted 8HQs has been proposed for use in the treatment of Alzheimers disease (AD). Most notably, the therapeutic PBT2 (Prana Biotechnology Ltd.) has been shown to act as an efficient metal chaperone, disaggregate metal-enriched amyloid plaques comprised of the Aβ peptide, inhibit Cu/Aβ redox chemistry, and reverse the AD phenotype in transgenic animal models. Yet surprisingly little is known about the molecular interactions at play. In this study, we show that the homologous ligand 2-[(dimethylamino)methyl]-8-hydroxyquinoline (HL) forms a CuL complex with a conditional (apparent) dissociation constant of 0.33 nM at pH 6.9 and is capable of forming ternary Cu(2+) complexes with neurotransmitters including histamine (HA), glutamic acid (Glu), and glycine (Gly), with glutathione disulfide (GSSG), and with histidine (His) side chains of proteins and peptides including the Aβ peptide. Our findings suggest a molecular basis for the strong metal chaperone activity of PBT2, its ability to attenuate Cu(2+)/Aβ interactions, and its potential to promote neuroprotective and neuroregenerative effects.

Collaboration


Dive into the Simon C. Drew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wojciech Bal

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge