Simon C. K. Shiu
Hong Kong Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Simon C. K. Shiu.
european conference on computer vision | 2012
Pengfei Zhu; Lei Zhang; Qinghua Hu; Simon C. K. Shiu
Small sample size is one of the most challenging problems in face recognition due to the difficulty of sample collection in many real-world applications. By representing the query sample as a linear combination of training samples from all classes, the so-called collaborative representation based classification (CRC) shows very effective face recognition performance with low computational cost. However, the recognition rate of CRC will drop dramatically when the available training samples per subject are very limited. One intuitive solution to this problem is operating CRC on patches and combining the recognition outputs of all patches. Nonetheless, the setting of patch size is a non-trivial task. Considering the fact that patches on different scales can have complementary information for classification, we propose a multi-scale patch based CRC method, while the ensemble of multi-scale outputs is achieved by regularized margin distribution optimization. Our extensive experiments validated that the proposed method outperforms many state-of-the-art patch based face recognition algorithms.
Pattern Recognition | 2015
Pengfei Zhu; Wangmeng Zuo; Lei Zhang; Qinghua Hu; Simon C. K. Shiu
By removing the irrelevant and redundant features, feature selection aims to find a compact representation of the original feature with good generalization ability. With the prevalence of unlabeled data, unsupervised feature selection has shown to be effective in alleviating the curse of dimensionality, and is essential for comprehensive analysis and understanding of myriads of unlabeled high dimensional data. Motivated by the success of low-rank representation in subspace clustering, we propose a regularized self-representation (RSR) model for unsupervised feature selection, where each feature can be represented as the linear combination of its relevant features. By using L 2 , 1 -norm to characterize the representation coefficient matrix and the representation residual matrix, RSR is effective to select representative features and ensure the robustness to outliers. If a feature is important, then it will participate in the representation of most of other features, leading to a significant row of representation coefficients, and vice versa. Experimental analysis on synthetic and real-world data demonstrates that the proposed method can effectively identify the representative features, outperforming many state-of-the-art unsupervised feature selection methods in terms of clustering accuracy, redundancy reduction and classification accuracy. HighlightsA regularized self-representation (RSR) model is proposed for unsupervised feature selection.An iterative reweighted least-squares algorithm is proposed to solve the RSR model.The proposed method shows superior performance to state-of-the-art.
IEEE Transactions on Neural Networks | 2013
Meng Yang; Lei Zhang; Simon C. K. Shiu; David Zhang
Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.
IEEE Transactions on Knowledge and Data Engineering | 2006
Yan Li; Simon C. K. Shiu; Sankar K. Pal
CBR systems that are built for the classification problems are called CBR classifiers. This paper presents a novel and fast approach to building efficient and competent CBR classifiers that combines both feature reduction (FR) and case selection (CS). It has three central contributions: 1) it develops a fast rough-set method based on relative attribute dependency among features to compute the approximate reduct, 2) it constructs and compares different case selection methods based on the similarity measure and the concepts of case coverage and case reachability, and 3) CBR classifiers built using a combination of the FR and CS processes can reduce the training burden as well as the need to acquire domain knowledge. The overall experimental results demonstrating on four real-life data sets show that the combined FR and CS method can preserve, and may also improve, the solution accuracy while at the same time substantially reducing the storage space. The case retrieval time is also greatly reduced because the use of CBR classifier contains a smaller amount of cases with fewer features. The developed FR and CS combination method is also compared with the kernel PCA and SVMs techniques. Their storage requirement, classification accuracy, and classification speed are presented and discussed.
IEEE Transactions on Information Forensics and Security | 2014
Pengfei Zhu; Wangmeng Zuo; Lei Zhang; Simon C. K. Shiu; David Zhang
With the rapid development of digital imaging and communication technologies, image set-based face recognition (ISFR) is becoming increasingly important. One key issue of ISFR is how to effectively and efficiently represent the query face image set using the gallery face image sets. The set-to-set distance-based methods ignore the relationship between gallery sets, whereas representing the query set images individually over the gallery sets ignores the correlation between query set images. In this paper, we propose a novel image set-based collaborative representation and classification method for ISFR. By modeling the query set as a convex or regularized hull, we represent this hull collaboratively over all the gallery sets. With the resolved representation coefficients, the distance between the query set and each gallery set can then be calculated for classification. The proposed model naturally and effectively extends the image-based collaborative representation to an image set based one, and our extensive experiments on benchmark ISFR databases show the superiority of the proposed method to state-of-the-art ISFR methods under different set sizes in terms of both recognition rate and efficiency.
computational intelligence | 2001
Simon C. K. Shiu; Daniel S. Yeung; Cai Hung Sun; Xizhao Wang
In this article we propose a case‐base maintenance methodology based on the idea of transferring knowledge between knowledge containers in a case‐based reasoning (CBR) system. A machine‐learning technique, fuzzy decision‐tree induction, is used to transform the case knowledge to adaptation knowledge. By learning the more sophisticated fuzzy adaptation knowledge, many of the redundant cases can be removed. This approach is particularly useful when the case base consists of a large number of redundant cases and the retrieval efficiency becomes a real concern of the user. The method of maintaining a case base from scratch, as proposed in this article, consists of four steps. First, an approach to learning feature weights automatically is used to evaluate the importance of different features in a given case base. Second, clustering of cases is carried out to identify different concepts in the case base using the acquired feature‐weights knowledge. Third, adaptation rules are mined for each concept using fuzzy decision trees. Fourth, a selection strategy based on the concepts of case coverage and reachability is used to select representative cases. In order to demonstrate the effectiveness of this approach as well as to examine the relationship between compactness and performance of a CBR system, experimental testing is carried out using the Traveling and the Rice Taste data sets. The results show that the testing case bases can be reduced by 36 and 39 percent, respectively, if we complement the remaining cases by the adaptation rules discovered using our approach. The overall accuracies of the two smaller case bases are 94 and 90 percent, respectively, of the originals.
Applied Intelligence | 2004
Simon C. K. Shiu; Sankar K. Pal
Here we first describe the concepts, components and features of CBR. The feasibility and merits of using CBR for problem solving is then explained. This is followed by a description of the relevance of soft computing tools to CBR. In particular, some of the tasks in the four REs, namely Retrieve, Reuse, Revise and Retain, of the CBR cycle that have relevance as prospective candidates for soft computing applications are explained.
soft computing | 2000
Julie Main; Tharam S. Dillon; Simon C. K. Shiu
This tutorial chapter introduces the concepts and applications of case based reasoning (CBR) systems. The first Section briefly describes what CBR is, and when and how to use it. The second Section looks at the description and indexing of cases in CBR systems. The retrieval and adaptation processes for finding solutions are outlined in Section 1.3. Learning and maintenance of CBR, owing to the changes in domain knowledge and task environments over time, are discussed in Section 1.4. The role of soft computing in CBR is briefly described in Section 1.5. The final Section gives some examples of successful CBR applications in different areas.
international workshop on fuzzy logic and applications | 2006
Yan Li; Simon C. K. Shiu; Sankar K. Pal; James N. K. Liu
This paper presents a novel rough set-based case-based reasoner for use in text categorization (TC). The reasoner has four main components: feature term extractor, document representor, case selector, and case retriever. It operates by first reducing the number of feature terms in the documents using the rough set technique. Then, the number of documents is reduced using a new document selection approach based on the case-based reasoning (CBR) concepts of coverage and reachability. As a result, both the number of feature terms and documents are reduced with only minimal loss of information. Finally, this smaller set of documents with fewer feature terms is used in TC. The proposed rough set-based case-based reasoner was tested on the Reuters21578 text datasets. The experimental results demonstrate its effectiveness and efficiency as it significantly reduced feature terms and documents, important for improving the efficiency of TC, while preserving and even improving classification accuracy.
Pattern Recognition | 2008
Ben Niu; Qiang Yang; Simon C. K. Shiu; Sankar K. Pal
In this paper we propose a two-dimensional (2D) Laplacianfaces method for face recognition. The new algorithm is developed based on two techniques, i.e., locality preserved embedding and image based projection. The 2D Laplacianfaces method is not only computationally more efficient but also more accurate than the one-dimensional (1D) Laplacianfaces method in extracting the facial features for human face authentication. Extensive experiments are performed to test and evaluate the new algorithm using the FERET and the AR face databases. The experimental results indicate that the 2D Laplacianfaces method significantly outperforms the existing 2D Eigenfaces, the 2D Fisherfaces and the 1D Laplacianfaces methods under various experimental conditions.