Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Ebbinghaus is active.

Publication


Featured researches published by Simon Ebbinghaus.


Proceedings of the National Academy of Sciences of the United States of America | 2007

An extended dynamical hydration shell around proteins

Simon Ebbinghaus; Seung Joong Kim; Matthias Heyden; Xin Yu; U. Heugen; Martin Gruebele; David M. Leitner; Martina Havenith

The focus in protein folding has been very much on the protein backbone and sidechains. However, hydration waters make comparable contributions to the structure and energy of proteins. The coupling between fast hydration dynamics and protein dynamics is considered to play an important role in protein folding. Fundamental questions of protein hydration include, how far out into the solvent does the influence of the biomolecule reach, how is the water affected, and how are the properties of the hydration water influenced by the separation between protein molecules in solution? We show here that Terahertz spectroscopy directly probes such solvation dynamics around proteins, and determines the width of the dynamical hydration layer. We also investigate the dependence of solvation dynamics on protein concentration. We observe an unexpected nonmonotonic trend in the measured terahertz absorbance of the five helix bundle protein λ6–85* as a function of the protein: water molar ratio. The trend can be explained by overlapping solvation layers around the proteins. Molecular dynamics simulations indicate water dynamics in the solvation layer around one protein to be distinct from bulk water out to ≈10 Å. At higher protein concentrations such that solvation layers overlap, the calculated absorption spectrum varies nonmonotonically, qualitatively consistent with the experimental observations. The experimental data suggest an influence on the correlated water network motion beyond 20 Å, greater than the pure structural correlation length usually observed.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding

Apratim Dhar; Antonios Samiotakis; Simon Ebbinghaus; Lea Nienhaus; Dirar Homouz; Martin Gruebele; Margaret S. Cheung

We combine experiment and computer simulation to show how macromolecular crowding dramatically affects the structure, function, and folding landscape of phosphoglycerate kinase (PGK). Fluorescence labeling shows that compact states of yeast PGK are populated as the amount of crowding agents (Ficoll 70) increases. Coarse-grained molecular simulations reveal three compact ensembles: C (crystal structure), CC (collapsed crystal), and Sph (spherical compact). With an adjustment for viscosity, crowded wild-type PGK and fluorescent PGK are about 15 times or more active in 200 mg/ml Ficoll than in aqueous solution. Our results suggest a previously undescribed solution to the classic problem of how the ADP and diphosphoglycerate binding sites of PGK come together to make ATP: Rather than undergoing a hinge motion, the ADP and substrate sites are already located in proximity under crowded conditions that mimic the in vivo conditions under which the enzyme actually operates. We also examine T-jump unfolding of PGK as a function of crowding experimentally. We uncover a nonmonotonic folding relaxation time vs. Ficoll concentration. Theory and modeling explain why an optimum concentration exists for fastest folding. Below the optimum, folding slows down because the unfolded state is stabilized relative to the transition state. Above the optimum, folding slows down because of increased viscosity.


Nature Methods | 2010

Protein folding stability and dynamics imaged in a living cell

Simon Ebbinghaus; Apratim Dhar; J. Douglas McDonald; Martin Gruebele

Biomolecular dynamics and stability are predominantly investigated in vitro and extrapolated to explain function in the living cell. We present fast relaxation imaging (FreI), which combines fluorescence microscopy and temperature jumps to probe biomolecular dynamics and stability inside a single living cell with high spatiotemporal resolution. We demonstrated the method by measuring the reversible fast folding kinetics as well as folding thermodynamics of a fluorescence resonance energy transfer (FRET) probe-labeled phosphoglycerate kinase construct in two human cell lines. Comparison with in vitro experiments at 23–49 °C showed that the cell environment influences protein stability and folding rate. FReI should also be applicable to the study of protein-protein interactions and heat-shock responses as well as to comparative studies of cell populations or whole organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Long-range protein-water dynamics in hyperactive insect antifreeze proteins.

Konrad Meister; Simon Ebbinghaus; Yao Xu; John G. Duman; Arthur L. DeVries; Martin Gruebele; David M. Leitner; Martina Havenith

Antifreeze proteins (AFPs) are specific proteins that are able to lower the freezing point of aqueous solutions relative to the melting point. Hyperactive AFPs, identified in insects, have an especially high ability to depress the freezing point by far exceeding the abilities of other AFPs. In previous studies, we postulated that the activity of AFPs can be attributed to two distinct molecular mechanisms: (i) short-range direct interaction of the protein surface with the growing ice face and (ii) long-range interaction by protein-induced water dynamics extending up to 20 Å from the protein surface. In the present paper, we combine terahertz spectroscopy and molecular simulations to prove that long-range protein–water interactions make essential contributions to the high antifreeze activity of insect AFPs from the beetle Dendroides canadensis. We also support our hypothesis by studying the effect of the addition of the osmolyte sodium citrate.


Faraday Discussions | 2009

The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin.

Benjamin Born; Seung Joong Kim; Simon Ebbinghaus; Martin Gruebele; Martina Havenith

The role of water in the functioning of proteins has been a hot topic over the years. We use terahertz (THz) spectroscopy as an experimental tool to probe the protein-induced fast solvation dynamics of ubiquitin. In order to investigate the effect of protein flexibility on the changes in the solvation dynamics, we have measured the concentration-dependent THz absorption of several site-specific ubiquitin mutants. The observed non-linear dependence of absorption on concentration is a signature of a long-range hydration shell with properties distinct from bulk water. We determined a dynamical hydration shell of a thickness of at least 18 A on the protein surface. This exceeds the static hydration layer as it is typically observed by scattering methods (3 A) by far. We also conclude that any increase in flexibility obtained by side-chain truncations that decrease the structural rigidity of the protein results in more bulk-like behaviour of the dynamical hydration shell. Furthermore, our THz measurements show that a single phenylalanine-to-tryptophan substitution to introduce a fluorescent marker leads to measurable changes in the solvation dynamics.


Journal of the American Chemical Society | 2008

Protein Sequence- and pH-Dependent Hydration Probed by Terahertz Spectroscopy

Simon Ebbinghaus; Seung Joong Kim; Matthias Heyden; Xin Yu; Martin Gruebele; David M. Leitner; Martina Havenith

Solvation free energy changes induced by protein folding and function are comparable to the corresponding overall free energy changes. Yet the structure, dynamics, and energetics of the protein itself have received more attention because they are easier to probe. Here we use terahertz (far-infrared) spectroscopy to directly probe the effect of mutations and solvent pH on the solvent shell−protein interaction. We study absorption spectra of the 80 residue viral protein, a five helix bundle, in the 2.1−2.8 THz region. We find that the wild type at pH 7 has a much more pronounced effect on long-distance solvation water than mutants replacing a single polar glutamine side chain with aromatic residues (tyrosine, histidine). This is true both in the context of enhanced and decreased helix stability (via alanine and glycine substitutions). Bringing the wild type and mutants closer to the unfolding transition by lowering the pH likewise reduces the long distance solvation effect. Thus terahertz spectroscopy can b...


Journal of the American Chemical Society | 2014

Protein Stabilization by Macromolecular Crowding through Enthalpy Rather Than Entropy

Michael Senske; Lisa Törk; Benjamin Born; Martina Havenith; Christian Herrmann; Simon Ebbinghaus

The interior of the cell is a densely crowded environment in which protein stability is affected differently than in dilute solution. Macromolecular crowding is commonly understood in terms of an entropic volume exclusion effect based on hardcore repulsions among the macromolecules. We studied the thermal unfolding of ubiquitin in the presence of different cosolutes (glucose, dextran, poly(ethylene glycol), KCl, urea). Our results show that for a correct dissection of the cosolute-induced changes of the free energy into its enthalpic and entropic contributions, the temperature dependence of the heat capacity change needs to be explicitly taken into account. In contrast to the prediction by the excluded volume theory, we observed an enthalpic stabilization and an entropic destabilization for glucose, dextran, and poly(ethylene glycol). The enthalpic stabilization mechanism induced by the macromolecular crowder dextran was similar to the enthalpic stabilization mechanism of its monomeric building block glucose. In the case of poly(ethylene glycol), entropy is dominating over enthalpy leading to an overall destabilization. We propose a new model to classify cosolute effects in terms of their enthalpic contributions to protein stability.


Biophysical Journal | 2011

Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells

Apratim Dhar; Kiran Girdhar; Hannah Gelman; Simon Ebbinghaus; Martin Gruebele

We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.


Journal of the American Chemical Society | 2010

Antifreeze Glycoprotein Activity Correlates with Long-Range Protein−Water Dynamics

Simon Ebbinghaus; Konrad Meister; Benjamin Born; Arthur L. DeVries; Martin Gruebele; Martina Havenith

Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) enable the survival of organisms living in subfreezing habitats and serve as preservatives. Although their function is known, the underlying molecular mechanism was not understood. Mutagenesis experiments questioned the previous assumption of hydrogen bonding as the dominant mechanism. We use terahertz spectroscopy to show that antifreeze activity is directly correlated with long-range collective hydration dynamics. Our results provide evidence for a new model of how AFGPs prevent water from freezing. We suggest that antifreeze activity may be induced because the AFGP perturbs the aqueous solvent over long distances. Retarded water dynamics in the large hydration shell does not favor freezing. The complexation of the carbohydrate cis-hydroxyl groups by borate suppresses the long-range hydration shell detected by terahertz absorption. The hydration dynamics shift toward bulk water behavior strongly reduces the AFGP antifreeze activity, further supporting our model.


Angewandte Chemie | 2015

Excluded-Volume Effects in Living Cells

David Gnutt; Mimi Gao; Oliver Brylski; Matthias Heyden; Simon Ebbinghaus

Biomolecules evolve and function in densely crowded and highly heterogeneous cellular environments. Such conditions are often mimicked in the test tube by the addition of artificial macromolecular crowding agents. Still, it is unclear if such cosolutes indeed reflect the physicochemical properties of the cellular environment as the in-cell crowding effect has not yet been quantified. We have developed a macromolecular crowding sensor based on a FRET-labeled polymer to probe the macromolecular crowding effect inside single living cells. Surprisingly, we find that excluded-volume effects, although observed in the presence of artificial crowding agents, do not lead to a compression of the sensor in the cell. The average conformation of the sensor is similar to that in aqueous buffer solution and cell lysate. However, the in-cell crowding effect is distributed heterogeneously and changes significantly upon cell stress. We present a tool to systematically study the in-cell crowding effect as a modulator of biomolecular reactions.

Collaboration


Dive into the Simon Ebbinghaus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Gnutt

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mimi Gao

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge